IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v85y2023i5p1048-1082.html
   My bibliography  Save this article

A Mixed Frequency BVAR for the Euro Area Labour Market

Author

Listed:
  • Agostino Consolo
  • Claudia Foroni
  • Catalina Martínez Hernández

Abstract

We introduce a Bayesian mixed frequency VAR model for the aggregate euro area labour market that features a structural identification via sign restrictions. The purpose of this paper is twofold: we aim at (i) providing reliable and timely forecasts of key labour market variables and (ii) enhancing the economic interpretation of the main movements in the labour market. We find satisfactory results in terms of nowcasting and forecasting, especially for employment growth. Furthermore, we look into the shocks that drove the labour market and macroeconomic dynamics from 2002 to 2022, with an insight also on the COVID‐19 recession. While demand shocks were the main drivers during the Global Financial Crisis, technology and wage bargaining factors, reflecting the degree of lockdown‐related restrictions and job retention schemes, have been important drivers of key labour market variables during the pandemic.

Suggested Citation

  • Agostino Consolo & Claudia Foroni & Catalina Martínez Hernández, 2023. "A Mixed Frequency BVAR for the Euro Area Labour Market," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 1048-1082, October.
  • Handle: RePEc:bla:obuest:v:85:y:2023:i:5:p:1048-1082
    DOI: 10.1111/obes.12555
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12555
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
    2. Claudia Foroni & Massimiliano Marcellino, 2016. "Mixed frequency structural vector auto-regressive models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 403-425, February.
    3. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    4. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
    5. Olivier Blanchard & Jordi Galí, 2010. "Labor Markets and Monetary Policy: A New Keynesian Model with Unemployment," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 1-30, April.
    6. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    7. Mark Gertler & Luca Sala & Antonella Trigari, 2008. "An Estimated Monetary DSGE Model with Unemployment and Staggered Nominal Wage Bargaining," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(8), pages 1713-1764, December.
    8. Koenig, Felix & Manning, Alan & Petrongolo, Barbara, 2014. "Reservation wages and the wage flexibility puzzle," LSE Research Online Documents on Economics 60613, London School of Economics and Political Science, LSE Library.
    9. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    10. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    11. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    12. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    13. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    14. Christoffel, Kai & Kuester, Keith & Linzert, Tobias, 2009. "The role of labor markets for euro area monetary policy," European Economic Review, Elsevier, vol. 53(8), pages 908-936, November.
    15. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    16. repec:zbw:bofrdp:2018_014 is not listed on IDEAS
    17. Mark Gertler & Antonella Trigari, 2009. "Unemployment Fluctuations with Staggered Nash Wage Bargaining," Journal of Political Economy, University of Chicago Press, vol. 117(1), pages 38-86, February.
    18. Consolo, Agostino & Da Silva, António Dias, 2019. "The euro area labour market through the lens of the Beveridge curve," Economic Bulletin Articles, European Central Bank, vol. 4.
    19. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    20. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    21. Christopher A. Pissarides, 2000. "Equilibrium Unemployment Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161877, December.
    22. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    23. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    24. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    25. Koenig, Felix & Manning, Alan & Petrongolo, Barbara, 2014. "Reservation wages and the wage flexibility puzzle," LSE Research Online Documents on Economics 60613, London School of Economics and Political Science, LSE Library.
    26. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    27. Claudia Foroni & Francesco Furlanetto & Antoine Lepetit, 2018. "Labor Supply Factors And Economic Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(3), pages 1491-1510, August.
    28. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    29. Haroon Mumtaz & Francesco Zanetti, 2012. "Neutral Technology Shocks And The Dynamics Of Labor Input: Results From An Agnostic Identification," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(1), pages 235-254, February.
    30. Furlanetto, Francesco & Groshenny, Nicolas, 2016. "Reallocation shocks, persistence and nominal rigidities," Economics Letters, Elsevier, vol. 141(C), pages 151-155.
    31. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    32. Drago Bergholt & Francesco Furlanetto & Nicolò Maffei-Faccioli, 2022. "The Decline of the Labor Share: New Empirical Evidence," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 163-198, July.
    33. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbritti, Mirko & Consolo, Agostino, 2024. "Labour market skills, endogenous productivity and business cycles," European Economic Review, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Consolo, Agostino & Foroni, Claudia & Martínez Hernández, Catalina, 2021. "A mixed frequency BVAR for the euro area labour market," Working Paper Series 2601, European Central Bank.
    2. Budrys, Žymantas & Porqueddu, Mario & Sokol, Andrej, 2022. "Striking a bargain: narrative identification of wage bargaining shocks," Research Bulletin, European Central Bank, vol. 98.
    3. Josué Diwambuena & Raquel Fonseca & Stefan Schubert, 2021. "Italian Labour Frictions and Wage Rigidities in an Estimated DSGE," BEMPS - Bozen Economics & Management Paper Series BEMPS88, Faculty of Economics and Management at the Free University of Bozen.
    4. Abbritti, Mirko & Consolo, Agostino, 2024. "Labour market skills, endogenous productivity and business cycles," European Economic Review, Elsevier, vol. 170(C).
    5. Haroon Mumtaz & Francesco Zanetti, 2012. "Neutral Technology Shocks And The Dynamics Of Labor Input: Results From An Agnostic Identification," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(1), pages 235-254, February.
    6. Elton Beqiraj & Massimiliano Tancioni, 2014. "Evaluating Labor Market Targeted Fiscal Policies inHigh Unemployment EZ Countries," Working Papers in Public Economics 165, Department of Economics and Law, Sapienza University of Roma.
    7. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, May.
    8. Liu, Zheng & Miao, Jianjun & Zha, Tao, 2016. "Land prices and unemployment," Journal of Monetary Economics, Elsevier, vol. 80(C), pages 86-105.
    9. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    10. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    12. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    13. Matthias S. Hertweck & Vivien Lewis & Stefania Villa, 2021. "Going the Extra Mile: Effort by Workers and Job‐Seekers," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 2099-2127, December.
    14. Jordi Galí & Frank Smets & Rafael Wouters, 2012. "Unemployment in an Estimated New Keynesian Model," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 329-360.
    15. Imen Ben Mohamed & Marine Salès, 2015. "Credit imperfections, labor market frictions and unemployment: a DSGE approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01082491, HAL.
    16. Theodoridis, Konstantinos & Zanetti, Francesco, 2014. "News and labour market dynamics in the data and in matching models," Bank of England working papers 488, Bank of England.
    17. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    18. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
    19. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    20. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:85:y:2023:i:5:p:1048-1082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.