Nowcasting and the Use of Big Data in Short-Term Macroeconomic Forecasting: A Critical Review
Author
Abstract
Suggested Citation
DOI: https://doi.org/10.24187/ecostat.2018.505d.1966
Download full text from publisher
References listed on IDEAS
- Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- D'Amuri, Francesco & Marcucci, Juri, 2009.
"‘Google it!’ Forecasting the US unemployment rate with a Google job search index,"
ISER Working Paper Series
2009-32, Institute for Social and Economic Research.
- Francesco D’Amuri & Juri Marcucci, 2010. "“Google it!”Forecasting the US Unemployment Rate with a Google Job Search index," Working Papers 2010.31, Fondazione Eni Enrico Mattei.
- D'Amuri, Francesco/FD & Marcucci, Juri/JM, 2009. ""Google it!" Forecasting the US unemployment rate with a Google job search index," MPRA Paper 18248, University Library of Munich, Germany.
- Greg Tkacz, 2013. "Predicting Recessions in Real-Time: Mining Google Trends and Electronic Payments Data for Clues," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 387, September.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Annabelle Mourougane, 2006. "Forecasting Monthly GDP for Canada," OECD Economics Department Working Papers 515, OECD Publishing.
- Galbraith, John W. & Tkacz, Greg, 2015. "Nowcasting GDP with electronic payments data," Statistics Paper Series 10, European Central Bank.
- Nii Ayi Armah, 2013. "Big Data Analysis: The Next Frontier," Bank of Canada Review, Bank of Canada, vol. 2013(Summer), pages 32-39.
- Nigel Pain & Christine Lewis & Thai-Thanh Dang & Yosuke Jin & Pete Richardson, 2014. "OECD Forecasts During and After the Financial Crisis: A Post Mortem," OECD Economics Department Working Papers 1107, OECD Publishing.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
- Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
- Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
- Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
- Aleksandar Bradic, 2012. "The Role of Social Feedback in Financing of Technology Ventures," Papers 1301.2196, arXiv.org.
- Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
- Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015.
"Determinants of systemic risk and information dissemination,"
International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Working Paper series 67_13, Rimini Centre for Economic Analysis.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Discussion Papers Series, Department of Economics, Tufts University 0776, Department of Economics, Tufts University.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
- Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
- repec:zbw:rwirep:0382 is not listed on IDEAS
- Monokroussos, George & Zhao, Yongchen, 2020.
"Nowcasting in real time using popularity priors,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
- Monokroussos, George, 2015. "Nowcasting in Real Time Using Popularity Priors," MPRA Paper 68594, University Library of Munich, Germany.
- George Monokroussos & Yongchen Zhao, 2020. "Nowcasting in Real Time Using Popularity Priors," Working Papers 2020-01, Towson University, Department of Economics, revised Feb 2020.
- repec:hal:spmain:info:hdl:2441/5k53daedc2827oa91tfpuscvbn is not listed on IDEAS
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Kholodilin, Konstantin A. & Siliverstovs, Boriss, 2012.
"Measuring regional inequality by internet car price advertisements: Evidence for Germany,"
Economics Letters, Elsevier, vol. 116(3), pages 414-417.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2010. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," Discussion Papers of DIW Berlin 1036, DIW Berlin, German Institute for Economic Research.
- Boriss Siliverstovs & Konstantin Kholodilin, 2012. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," ERSA conference papers ersa12p911, European Regional Science Association.
- Konstantin Kholodilin & Boriss Siliverstovs, 2010. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," KOF Working papers 10-261, KOF Swiss Economic Institute, ETH Zurich.
- Florian Schaffner, 2015. "Predicting US bank failures with internet search volume data," ECON - Working Papers 214, Department of Economics - University of Zurich.
- Rodrigo Mulero & Alfredo Garcia-Hiernaux, 2023. "Forecasting unemployment with Google Trends: age, gender and digital divide," Empirical Economics, Springer, vol. 65(2), pages 587-605, August.
- Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
More about this item
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:ecosta:ecostat_2018_505-506_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Veronique Egloff (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.