IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/18899.html
   My bibliography  Save this paper

A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries

Author

Listed:
  • Tierney, Heather L. R.
  • Pan, Bing

Abstract

A new area of research involves the use of Google data, which has been normalized and scaled to predict economic activity. This new source of data holds both many advantages as well as disadvantages, which are discussed through the use of daily and weekly data. Daily and weekly data are employed to show the effect of aggregation as it pertains to Google data, which can lead to contradictory findings. In this paper, Poisson regressions are used to explore the relationship between the online traffic to a specific website and the search volumes for certain keyword search queries, along with the rankings of that specific website for those queries. The purpose of this paper is to point out the benefits and the pitfalls of a potential new source of data that lacks transparency in regards to the original level data, which is due to the normalization and scaling procedure utilized by Google.

Suggested Citation

  • Tierney, Heather L. R. & Pan, Bing, 2009. "A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries," MPRA Paper 18899, University Library of Munich, Germany, revised 27 Nov 2009.
  • Handle: RePEc:pra:mprapa:18899
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/18899/1/MPRA_paper_18899.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph E. Gagnon, 2008. "Inflation regimes and inflation expectations," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 229-243.
    2. Azar, Jose, 2009. "Electric Cars and Oil Prices," MPRA Paper 15538, University Library of Munich, Germany.
    3. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    4. Michener, Ron & Tighe, Carla, 1992. "A Poisson Regression Model of Highway Fatalities," American Economic Review, American Economic Association, vol. 82(2), pages 452-456, May.
    5. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    6. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    7. Rapach, David E, 2003. "International Evidence on the Long-Run Impact of Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 23-48, February.
    8. Cameron, A Colin & Windmeijer, Frank A G, 1996. "R-Squared Measures for Count Data Regression Models with Applications to Health-Care Utilization," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 209-220, April.
    9. Rossana, Robert J & Seater, John J, 1995. "Temporal Aggregation and Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-451, October.
    10. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelos Mourelatos & Manolis Tzagarakis, 2018. "An investigation of factors affecting the visits of online crowdsourcing and labor platforms," Netnomics, Springer, vol. 19(3), pages 95-130, December.
    2. Ying Liu & Yibing Chen & Sheng Wu & Geng Peng & Benfu Lv, 2015. "Composite leading search index: a preprocessing method of internet search data for stock trends prediction," Annals of Operations Research, Springer, vol. 234(1), pages 77-94, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    2. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    3. Nikos Askitas & Klaus F. Zimmermann, 2009. "Prognosen aus dem Internet: weitere Erholung am Arbeitsmarkt erwartet," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(25), pages 402-408.
    4. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    5. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    6. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    7. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    8. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    9. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    10. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    11. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    12. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    13. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    14. Georg von Graevenitz & Christian Helmers & Valentine Millot & Oliver Turnbull, 2016. "Does Online Search Predict Sales? Evidence from Big Data for Car Markets in Germany and the UK," Working Papers 71, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    15. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    16. Christian Balcells, 2022. "Determinants of firm boundaries and organizational performance: an empirical investigation of the Chilean truck market," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 423-461, April.
    17. Eli Arditi & Eldad Yechiam & Gal Zahavi, 2015. "Association between Stock Market Gains and Losses and Google Searches," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
    18. Rahlff, Helen & Rinne, Ulf & Sonnabend, Hendrik, 2023. "COVID-19, School Closures and (Cyber)Bullying in Germany," IZA Discussion Papers 16650, Institute of Labor Economics (IZA).
    19. Jaroslav Pavlicek & Ladislav Kristoufek, 2015. "Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
    20. Fabio Milani, 2021. "COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 223-252, January.

    More about this item

    Keywords

    Poisson Regression; Search Engine; Google Insights; Aggregation; Normalization Effects; Scaling Effects;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:18899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.