IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa12p911.html
   My bibliography  Save this paper

Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany

Author

Listed:
  • Boriss Siliverstovs
  • Konstantin Kholodilin

Abstract

We suggest an alternative indicator based on the car sales price placed on the Internet for measuring economic inequality among regions. The regional data on car prices in Germany were downloaded from two specialised websites http://www.mobile.de and http://www.autoscout24.de in December 2011. The corresponding number of unique car price observations downloaded from each website is 914,105 and 802,047. The following information was recorded: make, model, ZIP code, mileage, engine volume in liters and cubic centimeters, type of transmission (manual, automatic, etc.), year of the first registration, and offer price. The ZIP code information was used to find the geographical coordinates (latitude and longitude) of each car’s seller. Then, the price data were assigned to the respective NUTS1 and NUTS2 regions, given the information on their borders. The shapefile containing the geographical information on the regional borders was taken from the Eurostat. Using Germany as an example we illustrate that our estimates of regional income levels as well as of Gini indices display high, positive correlation with the official figures. This implies that the observed car prices can serve as a reasonably good proxy for income levels. In contrast to the traditional measures, our data can be fast and inexpensively retrieved from the web, and more importantly allow to estimate Gini indices at the NUTS2 level—something that has never been done for Germany before. We conclude that our approach to measuring regional inequality is a useful alternative source of information that could complement officially available measures.

Suggested Citation

  • Boriss Siliverstovs & Konstantin Kholodilin, 2012. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," ERSA conference papers ersa12p911, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa12p911
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa12/e120821aFinal00913.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:diw:diwwpp:dp997 is not listed on IDEAS
    2. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    3. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    4. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    5. Peter Krause & Andrea Schäfer, 2005. "Verteilung von Vermögen und Einkommen in Deutschland: große Unterschiede nach Geschlecht und Alter," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 72(11), pages 199-207.
    6. Konstantin Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?," KOF Working papers 10-256, KOF Swiss Economic Institute, ETH Zurich.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    2. repec:diw:diwwpp:dp1153 is not listed on IDEAS
    3. David Iselin & Boriss Siliverstovs, 2016. "Using newspapers for tracking the business cycle: a comparative study for Germany and Switzerland," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1103-1118, March.
    4. Boriss Siliverstovs & Konstantin A. Kholodilin & Vyacheslav Dombrovsky, 2014. "Using Personal Car Register for Measuring Economic Inequality in Countries with a Large Share of Shadow Economy: Evidence for Latvia," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 948-966, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
    4. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    5. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    6. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    7. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
    8. Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
    9. Olivier Gergaud & Victor Ginsburgh, 2016. "Evaluating the Economic Effects of Cultural Events," Working Papers ECARES ECARES 2016-24, ULB -- Universite Libre de Bruxelles.
    10. Francesco, D'Amuri, 2009. "Predicting unemployment in short samples with internet job search query data," MPRA Paper 18403, University Library of Munich, Germany.
    11. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    12. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    13. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    14. Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
    15. Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
    16. David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
    17. Maria De Paola & Vincenzo Scoppa, 2013. "Consumers’ Reactions to Negative Information on Product Quality: Evidence from Scanner Data," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(3), pages 235-280, May.
    18. Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
    19. Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
    20. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa12p911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.