IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1302-1335.html
   My bibliography  Save this article

Nowcasting with panels and alternative data: The OECD weekly tracker

Author

Listed:
  • Woloszko, Nicolas

Abstract

Alternative data are timely but messy. They can provide policymakers with real-time information, but their use is constrained by the complexity of their relationship with official statistics. Data from credit card transactions, search engines, or traffic have been made available since only recently, which makes it more difficult to precisely gauge their relationship with national accounts. This paper aims at solving this problem by compensating their short history with their large country coverage. It introduces a heterogeneous panel model approach where a neural network learns the relationship between Google Trends data and GDP growth from data pooled from 46 countries. The resulting “OECD Weekly Tracker” yields real-time estimates of weekly GDP, which are proven to be accurate using forecast simulations. It is a valuable compass for policymaking in turbulent waters.

Suggested Citation

  • Woloszko, Nicolas, 2024. "Nowcasting with panels and alternative data: The OECD weekly tracker," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1302-1335.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1302-1335
    DOI: 10.1016/j.ijforecast.2023.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1302-1335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.