How does Google search affect trader positions and crude oil prices?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econmod.2015.04.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ron Alquist & Lutz Kilian, 2010.
"What do we learn from the price of crude oil futures?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
- Kilian, Lutz & Alquist, Ron, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
- Albert Saiz & Uri Simonsohn, 2013. "Proxying For Unobservable Variables With Internet Document-Frequency," Journal of the European Economic Association, European Economic Association, vol. 11(1), pages 137-165, February.
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- Sanders, Dwight R. & Boris, Keith & Manfredo, Mark, 2004. "Hedgers, funds, and small speculators in the energy futures markets: an analysis of the CFTC's Commitments of Traders reports," Energy Economics, Elsevier, vol. 26(3), pages 425-445, May.
- Yan Carrière‐Swallow & Felipe Labbé, 2013.
"Nowcasting with Google Trends in an Emerging Market,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 289-298, July.
- Yan Carrière-Swallow & Felipe Labbé, 2010. "Nowcasting With Google Trends in an Emerging Market," Working Papers Central Bank of Chile 588, Central Bank of Chile.
- Bahattin Buyuksahin & Jeffrey H. Harris, 2011.
"Do Speculators Drive Crude Oil Futures Prices?,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 167-202.
- Bahattin Büyükşahin & Jeffrey H. Harris, 2011. "Do Speculators Drive Crude Oil Futures Prices?," The Energy Journal, , vol. 32(2), pages 167-202, April.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Frans A. De Roon & Theo E. Nijman & Chris Veld, 2000.
"Hedging Pressure Effects in Futures Markets,"
Journal of Finance, American Finance Association, vol. 55(3), pages 1437-1456, June.
- de Roon, F.A. & Nijman, T.E. & Veld, C.H., 2000. "Hedging pressure effects in futures markets," Other publications TiSEM 3dfe2c9f-3194-4751-9b34-1, Tilburg University, School of Economics and Management.
- Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2014. "Do net positions in the futures market cause spot prices of crude oil?," Economic Modelling, Elsevier, vol. 41(C), pages 177-190.
- Heiko Jacobs & Martin Weber, 2012. "The Trading Volume Impact of Local Bias: Evidence from a Natural Experiment," Review of Finance, European Finance Association, vol. 16(4), pages 867-901.
- Cifarelli, Giulio & Paladino, Giovanna, 2010.
"Oil price dynamics and speculation: A multivariate financial approach,"
Energy Economics, Elsevier, vol. 32(2), pages 363-372, March.
- Giulio Cifarelli & Giovanna Paladino, 2008. "Oil price Dynamics and Speculation. A Multivariate Financial Approach," Working Papers - Economics wp2008_15.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
- Zhang, Wei & Shen, Dehua & Zhang, Yongjie & Xiong, Xiong, 2013. "Open source information, investor attention, and asset pricing," Economic Modelling, Elsevier, vol. 33(C), pages 613-619.
- Wang, Yaw-Huei & Keswani, Aneel & Taylor, Stephen J., 2006. "The relationships between sentiment, returns and volatility," International Journal of Forecasting, Elsevier, vol. 22(1), pages 109-123.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Changyun Wang, 2001.
"Investor Sentiment and Return Predictability in Agricultural Futures Markets,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(10), pages 929-952, October.
- Wang, Changyun, 2000. "Investor sentiment and return predictability in agricultural futures markets," MPRA Paper 36425, University Library of Munich, Germany, revised Sep 2002.
- Michael S. Drake & Darren T. Roulstone & Jacob R. Thornock, 2012. "Investor Information Demand: Evidence from Google Searches Around Earnings Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 50(4), pages 1001-1040, September.
- Wang, Yu Shan & Chueh, Yen Ling, 2013. "Dynamic transmission effects between the interest rate, the US dollar, and gold and crude oil prices," Economic Modelling, Elsevier, vol. 30(C), pages 792-798.
- Carfí, David & Musolino, Francesco, 2014. "Speculative and hedging interaction model in oil and U.S. dollar markets with financial transaction taxes," Economic Modelling, Elsevier, vol. 37(C), pages 306-319.
- Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
- Benhmad, François, 2012. "Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach," Economic Modelling, Elsevier, vol. 29(4), pages 1505-1514.
- Robert I. Webb & David P. Simon & Roy A. Wiggins III, 2001. "S&P futures returns and contrary sentiment indicators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(5), pages 447-462, May.
- Sanders, Dwight R. & Irwin, Scott H. & Leuthold, Raymond M., 2003. "The Theory Of Contrary Opinion: A Test Using Sentiment Indices In Futures Markets," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 21(1), pages 1-26.
- Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
- Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
- François Benhmad, 2012. "Modeling Nonlinear Granger Causality between the Oil price and U.S Dollar," Post-Print hal-03062497, HAL.
- Vosen, Simeon & Schmidt, Torsten, 2012.
"A monthly consumption indicator for Germany based on Internet search query data,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
- Simeon Vosen & Torsten Schmidt, 2012. "A monthly consumption indicator for Germany based on Internet search query data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 683-687, May.
- Schmidt, Torsten & Vosen, Simeon, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 208, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Kietzmann, Jan H. & Hermkens, Kristopher & McCarthy, Ian P. & Silvestre, Bruno S., 2011. "Social media? Get serious! Understanding the functional building blocks of social media," Business Horizons, Elsevier, vol. 54(3), pages 241-251, May.
- Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhifang He & Fangzhao Zhou, 2018. "Time-varying and asymmetric effects of the oil-specific demand shock on investor sentiment," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
- Moussa, Faten & BenOuda, Olfa & Delhoumi, Ezzeddine, 2017. "The use of open source internet to analysis and predict stock market trading volume," Research in International Business and Finance, Elsevier, vol. 41(C), pages 399-411.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Meshcheryakov, Artem & Winters, Drew B., 2022. "Retail investor attention and the limit order book: Intraday analysis of attention-based trading," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
- Aouadi, Amal & Arouri, Mohamed & Roubaud, David, 2018.
"Information demand and stock market liquidity: International evidence,"
Economic Modelling, Elsevier, vol. 70(C), pages 194-202.
- Amal Aouadi & Mohamed Arouri & David Roubaud, 2018. "Information demand and stock market liquidity: International evidence," Post-Print hal-02011044, HAL.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
- González-Fernández, Marcos & González-Velasco, Carmen, 2018. "Can Google econometrics predict unemployment? Evidence from Spain," Economics Letters, Elsevier, vol. 170(C), pages 42-45.
- Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Artem Meshcheryakov & Stoyu I Ivanov, 2017. "Investor's sentiment in predicting the Effective Federal Funds Rate," Economics Bulletin, AccessEcon, vol. 37(4), pages 2767-2796.
- Prashant Das & Alan Ziobrowski & N. Coulson, 2015. "Online Information Search, Market Fundamentals and Apartment Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 51(4), pages 480-502, November.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
More about this item
Keywords
Internet-based data; Google search volume index; Crude oil price; Granger causality; Trader positions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:49:y:2015:i:c:p:162-171. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.