Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey
Author
Abstract
Suggested Citation
DOI: 10.26650/JEPR963438
Download full text from publisher
References listed on IDEAS
- Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2015.
"Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries,"
PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
- Pavlicek, Jaroslav & Kristoufek, Ladislav, 2015. "Nowcasting unemployment rates with Google searches: Evidence from the Visegrad Group countries," FinMaP-Working Papers 34, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
- Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
- Meltem Gulenay Chadwick & Gonul Sengul, 2015.
"Nowcasting the Unemployment Rate in Turkey : Let's ask Google,"
Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 15(3), pages 15-40.
- Meltem Gulenay Chadwick & Gonul Sengul, 2012. "Nowcasting Unemployment Rate in Turkey : Let's Ask Google," Working Papers 1218, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Mondria, Jordi & Wu, Thomas & Zhang, Yi, 2010.
"The determinants of international investment and attention allocation: Using internet search query data,"
Journal of International Economics, Elsevier, vol. 82(1), pages 85-95, September.
- Jordi Mondria & Thomas Wu & Yi Zhang, 2008. "The Determinants of International Investment and Attention Allocation: Using Internet Search Query Data," Working Papers tecipa-326, University of Toronto, Department of Economics.
- Jain, Anshul & Biswal, Pratap Chandra, 2019. "Does internet search interest for gold move the gold spot, stock and exchange rate markets? A study from India," Resources Policy, Elsevier, vol. 61(C), pages 501-507.
- Melody Y. Huang & Randall R. Rojas & Patrick D. Convery, 2020. "Forecasting stock market movements using Google Trend searches," Empirical Economics, Springer, vol. 59(6), pages 2821-2839, December.
- Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
- Aouadi, Amal & Arouri, Mohamed & Teulon, Frédéric, 2013. "Investor attention and stock market activity: Evidence from France," Economic Modelling, Elsevier, vol. 35(C), pages 674-681.
- Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
- Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
- González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
- Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
- Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
- Peltomäki, Jarkko & Graham, Michael & Hasselgren, Anton, 2018. "Investor attention to market categories and market volatility: The case of emerging markets," Research in International Business and Finance, Elsevier, vol. 44(C), pages 532-546.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2015.
"Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries,"
PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
- Pavlicek, Jaroslav & Kristoufek, Ladislav, 2015. "Nowcasting unemployment rates with Google searches: Evidence from the Visegrad Group countries," FinMaP-Working Papers 34, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
- Mihaela Simionescu & Dalia Streimikiene & Wadim Strielkowski, 2020. "What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?," Sustainability, MDPI, vol. 12(3), pages 1-10, January.
- Nakamura, Nobuyuki & Suzuki, Aya, 2021. "COVID-19 and the intentions to migrate from developing countries: Evidence from online search activities in Southeast Asia," Journal of Asian Economics, Elsevier, vol. 76(C).
- Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
- Latoeiro, Pedro & Ramos, Sofía B. & Veiga, Helena, 2013. "Predictability of stock market activity using Google search queries," DES - Working Papers. Statistics and Econometrics. WS ws130605, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alessia Naccarato & Andrea Pierini & Stefano Falorsi, 2015. "Using Google Trend Data To Predict The Italian Unemployment Rate," Departmental Working Papers of Economics - University 'Roma Tre' 0203, Department of Economics - University Roma Tre.
- Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
More about this item
Keywords
Google trends; Unemployment rate; Time-series model; Forecasting; ARIMA JEL Classification : C53 ; E24 ; E37;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:iujepr:v:9:y:2022:i:2:p:229-244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.