IDEAS home Printed from https://ideas.repec.org/p/cnb/wpaper/2014-14.html
   My bibliography  Save this paper

Forecasting Mortgages: Internet Search Data as a Proxy for Mortgage Credit Demand

Author

Listed:
  • Branislav Saxa

Abstract

This paper examines the usefulness of Google Trends data for forecasting mortgage lending in the Czech Republic. While the official monthly statistics on mortgage lending come with a publication lag of one month, the data on how often people search for mortgage-related terms on the internet are available without any lag on a weekly basis. Growth in searches for mortgages and growth in mortgages actually provided are strongly correlated. The lag between these two growth rates is two months. Evaluation of out-of-sample forecasts shows that internet search data improve mortgage lending predictions significantly. In addition to forecasting performance evaluation, an experimental indicator of restrictively tight mortgage credit standards and conditions is proposed. Nowadays many countries run bank lending surveys to monitor the tightness of bank lending standards and conditions. The proposed indicator represents a complementary tool to such a survey.

Suggested Citation

  • Branislav Saxa, 2014. "Forecasting Mortgages: Internet Search Data as a Proxy for Mortgage Credit Demand," Working Papers 2014/14, Czech National Bank.
  • Handle: RePEc:cnb:wpaper:2014/14
    as

    Download full text from publisher

    File URL: https://www.cnb.cz/export/sites/cnb/en/economic-research/.galleries/research_publications/cnb_wp/cnbwp_2014_14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
    4. McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
    5. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
    2. Caporale, Guglielmo Maria & Menla Ali, Faek & Spagnolo, Fabio & Spagnolo, Nicola, 2022. "Cross-border portfolio flows and news media coverage," Journal of International Money and Finance, Elsevier, vol. 126(C).
    3. repec:prg:jnlpep:v:preprint:id:690:p:1-23 is not listed on IDEAS
    4. Simon Oehler, 2019. "Developments in the residential mortgage market in Germany – what can Google data tell us?," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    5. repec:men:wpaper:58_2015 is not listed on IDEAS
    6. Jaroslav Bukovina & Matus Marticek, 2016. "Sentiment and Bitcoin Volatility," MENDELU Working Papers in Business and Economics 2016-58, Mendel University in Brno, Faculty of Business and Economics.
    7. Jaroslav Bukovina, 2017. "The attention of a society towards corporate brand name and its determinants within the information-rich economy," MENDELU Working Papers in Business and Economics 2017-71, Mendel University in Brno, Faculty of Business and Economics.
    8. Vilma Deltuvaitė & Svatopluk Kapounek & Petr Koráb, 2019. "Impact of Behavioural Attention on the Households Foreign Currency Savings as a Response to the External Macroeconomic Shocks," Prague Economic Papers, Prague University of Economics and Business, vol. 2019(2), pages 155-177.
    9. Al-Nasseri, Alya & Menla Ali, Faek, 2018. "What does investors' online divergence of opinion tell us about stock returns and trading volume?," Journal of Business Research, Elsevier, vol. 86(C), pages 166-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    2. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
    3. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    4. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    5. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    6. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    7. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
    8. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    9. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    10. Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
    11. Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    12. Mihaela Simionescu & Dalia Streimikiene & Wadim Strielkowski, 2020. "What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?," Sustainability, MDPI, vol. 12(3), pages 1-10, January.
    13. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    14. Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
    15. Voraprapa Nakavachara & Nuarpear Lekfuangfu, 2017. "Predicting the Present Revisited: The Case of Thailand," PIER Discussion Papers 70, Puey Ungphakorn Institute for Economic Research.
    16. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    17. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    18. Anastasiou, Dimitrios & Drakos, Konstantinos, 2021. "European depositors’ behavior and crisis sentiment," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 117-136.
    19. Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.

    More about this item

    Keywords

    Credit demand; credit standards and conditions; credit supply; forecast evaluation; forecasting; Google econometrics; Internet search data; mortgage; smoothing;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2014/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jan Babecky (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.