IDEAS home Printed from https://ideas.repec.org/p/aah/create/2019-13.html
   My bibliography  Save this paper

In search of a job: Forecasting employment growth using Google Trends

Author

Listed:
  • Daniel Borup

    (Aarhus University and CREATES)

  • Erik Christian Montes Schütte

    (Aarhus University and CREATES)

Abstract

We show that Google search activity on relevant terms is a strong out-of-sample predictor for future employment growth in the US over the period 2004-2018 at both short and long horizons. Using a subset of ten keywords associated with “jobs”, we construct a large panel of 173 variables using Google’s own algorithms to find related search queries. We find that the best Google Trends model achieves an out-of-sample R2 between 26% and 59% at horizons spanning from one month to a year ahead, strongly outperforming benchmarks based on a large set of macroeconomic and financial predictors. This strong predictability extends to US state-level employment growth, using state-level specific Google search activity. Encompassing tests indicate that when the Google Trends panel is exploited using a non-linear model it fully encompasses the macroeconomic forecasts and provides significant information in excess of those.

Suggested Citation

  • Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2019-13
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/19/rp19_13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    2. Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    3. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    4. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    5. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    6. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    7. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    8. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    9. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    10. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    11. Francesco, D'Amuri, 2009. "Predicting unemployment in short samples with internet job search query data," MPRA Paper 18403, University Library of Munich, Germany.
    12. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    13. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    14. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    17. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    18. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    19. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    20. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    21. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    22. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    23. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    24. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    25. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    26. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    27. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    28. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    29. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
    30. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    31. Ayat, Leila & Burridge, Peter, 2000. "Unit root tests in the presence of uncertainty about the non-stochastic trend," Journal of Econometrics, Elsevier, vol. 95(1), pages 71-96, March.
    32. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    33. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    2. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    3. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
    4. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    5. Kerkemeier, Marco & Kruse-Becher, Robinson, 2022. "Join the club! Dynamics of global ESG indices convergence," Finance Research Letters, Elsevier, vol. 49(C).
    6. Alexander Berry & Molly Maloney & David Neumark, 2024. "The Missing Link? Using LinkedIn Data to Measure Race, Ethnic, and Gender Differences in Employment Outcomes at Individual Companies," NBER Chapters, in: Race, Ethnicity, and Economic Statistics for the 21st Century, National Bureau of Economic Research, Inc.
    7. Atin Aboutorabi & Ga'etan de Rassenfosse, 2024. "Nowcasting R&D Expenditures: A Machine Learning Approach," Papers 2407.11765, arXiv.org.
    8. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
    9. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    10. Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
    11. Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
    2. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    3. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    4. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    7. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    8. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    9. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
    10. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    11. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    12. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    13. Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
    14. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    15. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    16. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    17. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    18. Ribeiro, Pinho J., 2017. "Selecting exchange rate fundamentals by bootstrap," International Journal of Forecasting, Elsevier, vol. 33(4), pages 894-914.
    19. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    20. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.

    More about this item

    Keywords

    Google Trends; Forecast comparison; US employment growth; Targeting predictors; Random forests; Keyword search.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2019-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.