IDEAS home Printed from https://ideas.repec.org/a/bla/pacecr/v28y2023i3p314-346.html
   My bibliography  Save this article

A robust textual analysis of the dynamics of Hong Kong property market

Author

Listed:
  • Ken Wong
  • Max Kwong
  • Paul Luk
  • Michael Cheng

Abstract

Market sentiments influence the dynamics of Hong Kong’s macro‐critical property market, but the unobservable nature of market sentiments makes it difficult to systemically assess this sentiment channel. Using text mining techniques, this paper sets up a news‐based property market sentiment index and a Google Trends‐based buyer incentive index for Hong Kong and studies the sentiment channel of transmission in the Hong Kong property market. The news‐based property market sentiment index can reflect the change in sentiments in past key events, with the sentiments in the primary market tending to lead that of the secondary market during the low housing supply period. For the Google Buyer Incentive Index, we find that it has value‐added in forecasting (or nowcasting) the official property price index. In mapping out the sentiment channel using a structural vector‐autoregressive model, we find that an improvement in market sentiments could stimulate buyers’ incentives, which then together would affect property prices and transaction volumes.

Suggested Citation

  • Ken Wong & Max Kwong & Paul Luk & Michael Cheng, 2023. "A robust textual analysis of the dynamics of Hong Kong property market," Pacific Economic Review, Wiley Blackwell, vol. 28(3), pages 314-346, August.
  • Handle: RePEc:bla:pacecr:v:28:y:2023:i:3:p:314-346
    DOI: 10.1111/1468-0106.12398
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1468-0106.12398
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1468-0106.12398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang, Yun & Luk, Paul, 2020. "Measuring economic policy uncertainty in China," China Economic Review, Elsevier, vol. 59(C).
    2. Michela Scatigna & Robert Szemere & Kostas Tsatsaronis, 2014. "Residential property price statistics across the globe," BIS Quarterly Review, Bank for International Settlements, September.
    3. Cindy K Soo, 2018. "Quantifying Sentiment with News Media across Local Housing Markets," The Review of Financial Studies, Society for Financial Studies, vol. 31(10), pages 3689-3719.
    4. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    5. Leung, Charles Ka Yui & Tse, Chung-Yi, 2017. "Flipping in the housing market," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 232-263.
    6. Matteo Iacoviello, 2005. "House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle," American Economic Review, American Economic Association, vol. 95(3), pages 739-764, June.
    7. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    8. Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
    9. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
    10. Baxter, Marianne, 1994. "Real exchange rates and real interest differentials: Have we missed the business-cycle relationship?," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 5-37, February.
    11. Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data," ERES eres2014_17, European Real Estate Society (ERES).
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Kwan, Yum K. & Leung, Charles Ka Yui & Dong, Jinyue, 2015. "Comparing consumption-based asset pricing models: The case of an Asian city," Journal of Housing Economics, Elsevier, vol. 28(C), pages 18-41.
    14. Qing Gao & Tianxiao Zhao, 2018. "The Influence of Home Buyer Sentiment on Chinese Housing Prices¡ª¡ª Based on Media Text Mining," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(9), pages 145-145, September.
    15. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    16. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    17. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    18. Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-based commercial real estate forecasting with Google search volume data," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 32(6), pages 540-569, August.
    19. Francesco, D'Amuri, 2009. "Predicting unemployment in short samples with internet job search query data," MPRA Paper 18403, University Library of Munich, Germany.
    20. Charles Ka Yui Leung & Joe Cho Yiu Ng & Edward Chi Ho Tang, 2020. "What do we know about housing supply? The case of Hong Kong SAR," Economic and Political Studies, Taylor & Francis Journals, vol. 8(1), pages 6-20, January.
    21. Charles Ka Yui Leung, 2015. "Availability, Affordability and Volatility: The Case of the Hong Kong Housing Market," International Real Estate Review, Global Social Science Institute, vol. 18(3), pages 383-428.
    22. Paul Luk & Michael Cheng & Philip Ng & Ken Wong, 2020. "Economic policy uncertainty spillovers in small open economies: The case of Hong Kong," Pacific Economic Review, Wiley Blackwell, vol. 25(1), pages 21-46, February.
    23. Clive B. Walker, 2014. "Housing booms and media coverage," Applied Economics, Taylor & Francis Journals, vol. 46(32), pages 3954-3967, November.
    24. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    25. Dorinth W. van Dijk & Marc K. Francke, 2018. "Internet Search Behavior, Liquidity and Prices in the Housing Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 46(2), pages 368-403, June.
    26. Schüler, Yves S., 2018. "Detrending and financial cycle facts across G7 countries: mind a spurious medium term!," Working Paper Series 2138, European Central Bank.
    27. repec:arz:wpaper:eres2014-17 is not listed on IDEAS
    28. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, Taylor & Francis Journals, vol. 35(3), pages 283-312, January.
    29. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    30. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    2. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    3. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    4. Damian S. Damianov & Xiangdong Wang & Cheng Yan, 2021. "Google Search Queries, Foreclosures, and House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 63(2), pages 177-209, August.
    5. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    6. Mikhail Stolbov & Maria Shchepeleva, 2023. "Sentiment-based indicators of real estate market stress and systemic risk: international evidence," Annals of Finance, Springer, vol. 19(3), pages 355-382, September.
    7. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    8. Charles Ka Yui LEUNG, 2022. "Housing and Macroeconomics," ISER Discussion Paper 1197, Institute of Social and Economic Research, Osaka University.
    9. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    10. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    11. Biktimirov, Ernest N. & Sokolyk, Tatyana & Ayanso, Anteneh, 2024. "What is behind housing sentiment?," Finance Research Letters, Elsevier, vol. 60(C).
    12. Charles Ka Yui Leung & Joe Cho Yiu Ng, 2018. "Macro Aspects of Housing," GRU Working Paper Series GRU_2018_016, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    13. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    14. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    15. Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
    16. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    17. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    18. Hulya Bakirtas & Vildan Gulpinar Demirci, 2022. "Can Google Trends data provide information on consumer’s perception regarding hotel brands?," Information Technology & Tourism, Springer, vol. 24(1), pages 57-83, March.
    19. Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
    20. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:pacecr:v:28:y:2023:i:3:p:314-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1361-374X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.