IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v130y2018icp69-87.html
   My bibliography  Save this article

Ten years of research change using Google Trends: From the perspective of big data utilizations and applications

Author

Listed:
  • Jun, Seung-Pyo
  • Yoo, Hyoung Sun
  • Choi, San

Abstract

This study seeks to analyze the trends in research studies in the past decade which have utilized Google Trends, a new source of big data, to examine how the scope of research has expanded. Our purpose is to conduct a comprehensive and objective research into how the public use of Big Data from web searches has affected research, and furthermore, to discuss the implications of Google Trends in terms of Big Data utilization and application. To this end, we conducted a network analysis on 657 research papers that used Google Trends. We also identified the important nodes of the networks and reviewed the research directions of representative papers. The study reveals that Google Trends is used to analyze various variables in a wide range of areas, including IT, communications, medicine, health, business and economics. In addition, this study shows that research using Google Trends has increased dramatically in the last decade, and in the process, the focus of research has shifted to forecasting changes, whereas in the past the focus had been on merely describing and diagnosing research trends, such as surveillance and monitoring. This study also demonstrates that in recent years, there has been an expansion in analysis in linkage with other social Big Data sources, as researchers attempt to overcome the limitations of using only search information. Our study will provide various insights for researchers who utilize Google Trends as well as researchers who rely on various other sources of Big Data in their efforts to compare research trends and identify new areas for research.

Suggested Citation

  • Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
  • Handle: RePEc:eee:tefoso:v:130:y:2018:i:c:p:69-87
    DOI: 10.1016/j.techfore.2017.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517315536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2017.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vivienne Waller, 2011. "Not just information: Who searches for what on the search engine Google?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(4), pages 761-775, April.
    2. Ludo Waltman & Nees Eck, 2013. "A smart local moving algorithm for large-scale modularity-based community detection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(11), pages 1-14, November.
    3. Benjamin M. Althouse & Jevin D. West & Carl T. Bergstrom & Theodore Bergstrom, 2009. "Differences in impact factor across fields and over time," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(1), pages 27-34, January.
    4. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    5. Vivienne Waller, 2011. "Not just information: Who searches for what on the search engine Google?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(4), pages 761-775, April.
    6. van Lente, Harro & Spitters, Charlotte & Peine, Alexander, 2013. "Comparing technological hype cycles: Towards a theory," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1615-1628.
    7. Jun, Seung-Pyo & Yoo, Hyoung Sun & Kim, Ji-Hui, 2016. "A study on the effects of the CAFE standard on consumers," Energy Policy, Elsevier, vol. 91(C), pages 148-160.
    8. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Seung-Pyo Jun, 2012. "An empirical study of users’ hype cycle based on search traffic: the case study on hybrid cars," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 81-99, April.
    10. Erjia Yan & Ying Ding & Elin K. Jacob, 2012. "Overlaying communities and topics: an analysis on publication networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 499-513, February.
    11. Rao, Akshay R & Sieben, Wanda A, 1992. "The Effect of Prior Knowledge on Price Acceptability and the Type of Information Examined," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(2), pages 256-270, September.
    12. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    13. Liwen Vaughan & Yue Chen, 2015. "Data mining from web search queries: A comparison of google trends and baidu index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(1), pages 13-22, January.
    14. Bettman, James R & Park, C Whan, 1980. "Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 7(3), pages 234-248, December.
    15. Tefft, Nathan, 2011. "Insights on unemployment, unemployment insurance, and mental health," Journal of Health Economics, Elsevier, vol. 30(2), pages 258-264, March.
    16. Vaughan, Liwen & Yang, Rongbin, 2013. "Web traffic and organization performance measures: Relationships and data sources examined," Journal of Informetrics, Elsevier, vol. 7(3), pages 699-711.
    17. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    18. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    19. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    20. Jun, Seung-Pyo & Park, Do-Hyung & Yeom, Jaeho, 2014. "The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 237-253.
    21. Jun, Seung-Pyo & Yeom, Jaeho & Son, Jong-Ku, 2014. "A study of the method using search traffic to analyze new technology adoption," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 82-95.
    22. Alkemade, Floortje & Suurs, Roald A.A., 2012. "Patterns of expectations for emerging sustainable technologies," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 448-456.
    23. Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
    24. Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
    25. Dedehayir, Ozgur & Steinert, Martin, 2016. "The hype cycle model: A review and future directions," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 28-41.
    26. Jun, Seung-Pyo, 2012. "A comparative study of hype cycles among actors within the socio-technical system: With a focus on the case study of hybrid cars," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1413-1430.
    27. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    28. Beatty, Sharon E & Smith, Scott M, 1987. "External Search Effort: An Investigation across Several Product Categories," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(1), pages 83-95, June.
    29. Declan Butler, 2013. "When Google got flu wrong," Nature, Nature, vol. 494(7436), pages 155-156, February.
    30. Liwen Vaughan & Esteban Romero-Frías, 2014. "Web search volume as a predictor of academic fame: An exploration of Google trends," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 707-720, April.
    31. Jun, Seung-Pyo & Park, Do-Hyung, 2016. "Consumer information search behavior and purchasing decisions: Empirical evidence from Korea," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 97-111.
    32. Mavragani, Amaryllis & Tsagarakis, Konstantinos P., 2016. "YES or NO: Predicting the 2015 GReferendum results using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
    2. Jun, Seung-Pyo & Park, Do-Hyung & Yeom, Jaeho, 2014. "The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 237-253.
    3. Jun, Seung-Pyo & Park, Do-Hyung, 2016. "Consumer information search behavior and purchasing decisions: Empirical evidence from Korea," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 97-111.
    4. Jun, Seung-Pyo & Yoo, Hyoung Sun & Lee, Jae-Seong, 2021. "The impact of the pandemic declaration on public awareness and behavior: Focusing on COVID-19 google searches," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    6. Juan Camilo Anzoátegui-Zapata & Juan Camilo Galvis-Ciro, 2020. "Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 99-122, November.
    7. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    8. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    9. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
    10. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    11. Hulya Bakirtas & Vildan Gulpinar Demirci, 2022. "Can Google Trends data provide information on consumer’s perception regarding hotel brands?," Information Technology & Tourism, Springer, vol. 24(1), pages 57-83, March.
    12. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    13. Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
    14. Dedehayir, Ozgur & Steinert, Martin, 2016. "The hype cycle model: A review and future directions," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 28-41.
    15. Jun, Seung-Pyo & Yoo, Hyoung Sun & Kim, Ji-Hui, 2016. "A study on the effects of the CAFE standard on consumers," Energy Policy, Elsevier, vol. 91(C), pages 148-160.
    16. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    17. White, Gareth R.T. & Samuel, Anthony, 2019. "Programmatic Advertising: Forewarning and avoiding hype-cycle failure," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 157-168.
    18. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    19. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    20. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:130:y:2018:i:c:p:69-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.