My bibliography
Save this item
How is Machine Learning Useful for Macroeconomic Forecasting?
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baruník, Jozef & Hanus, Luboš, 2024. "Fan charts in era of big data and learning," Finance Research Letters, Elsevier, vol. 61(C).
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Philippe Goulet Coulombe & Maximilian Goebel, 2023. "Maximally Machine-Learnable Portfolios," Papers 2306.05568, arXiv.org, revised Apr 2024.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Gert Bijnens & Shyngys Karimov & Jozef Konings, 2023. "Does Automatic Wage Indexation Destroy Jobs? A Machine Learning Approach," De Economist, Springer, vol. 171(1), pages 85-117, March.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021.
"Macroeconomic data transformations matter,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Working Papers 20-17, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Papers 2008.01714, arXiv.org, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2020. "Macroeconomic Data Transformations Matter," CIRANO Working Papers 2020s-42, CIRANO.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- repec:hal:journl:hal-04675599 is not listed on IDEAS
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.
- Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
- Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
- Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023.
"Density forecasts of inflation: a quantile regression forest approach,"
Working Paper Series
2830, European Central Bank.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
- M. Lenza & I. Moutachaker & I. Moutachaker, 2024. "Density forecasts of inflation : a quantile regression forest approach," Documents de Travail de l'Insee - INSEE Working Papers 2024-12, Institut National de la Statistique et des Etudes Economiques.
- Colombo, Emilio & Pelagatti, Matteo, 2020.
"Statistical learning and exchange rate forecasting,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
- Emilio Colombo & Matteo Pelagatti, 2019. "Statistical Learning and Exchange Rate Forecasting," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis1901, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
- Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
- Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024.
"Machine learning and economic forecasting: The role of international trade networks,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
- Thiago Christiano Silva & Paulo Victor Berri Wilhelm & Diego Raphael Amancio, 2024. "Machine Learning and Economic Forecasting: the role of international trade networks," Working Papers Series 597, Central Bank of Brazil, Research Department.
- Thiago C. Silva & Paulo V. B. Wilhelm & Diego R. Amancio, 2024. "Machine learning and economic forecasting: the role of international trade networks," Papers 2404.08712, arXiv.org.
- Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"A large Canadian database for macroeconomic analysis,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2018. "A Large Canadian Database for Macroeconomic Analysis," CIRANO Working Papers 2018s-25, CIRANO.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "A Large Canadian Database for Macroeconomic Analysis," Working Papers 20-07, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Philippe Goulet Coulombe & Maximilian Gobel, 2023. "Maximally Machine-Learnable Portfolios," Working Papers 23-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2023.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022.
"Forecasting US Inflation Using Bayesian Nonparametric Models,"
Working Papers
22-05, Federal Reserve Bank of Cleveland.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano, 2023. "Forecasting US Inflation Using Bayesian Nonparametric Models," CEPR Discussion Papers 18244, C.E.P.R. Discussion Papers.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Papers 2202.13793, arXiv.org.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can Machine Learning Help to Select Portfolios of Mutual Funds?,"
Working Papers
1245, Barcelona School of Economics.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can machine learning help to select portfolios of mutual funds?," Economics Working Papers 1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023.
"Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models,"
Energy Economics, Elsevier, vol. 124(C).
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Maximilian Goebel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Papers 2206.10721, arXiv.org, revised Jun 2023.
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Working Papers 22-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Michael Zhemkov, 2021.
"Nowcasting Russian GDP using forecast combination approach,"
International Economics, CEPII research center, issue 168, pages 10-24.
- Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
- Michael W. McCracken & Serena Ng, 2021.
"FRED-QD: A Quarterly Database for Macroeconomic Research,"
Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
- Michael McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," NBER Working Papers 26872, National Bureau of Economic Research, Inc.
- Michael W. McCracken & Serena Ng, 2020. "FRED-QD: A Quarterly Database for Macroeconomic Research," Working Papers 2020-005, Federal Reserve Bank of St. Louis.
- Bas Scheer, 2022. "Addressing Unemployment Rate Forecast Errors in Relation to the Business Cycle," CPB Discussion Paper 434, CPB Netherlands Bureau for Economic Policy Analysis.
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Jihad El Hokayem & Ibrahim Jamali & Ale Hejase, 2024. "A forecasting model for oil prices using a large set of economic indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1615-1624, August.
- Philip Ndikum, 2020. "Machine Learning Algorithms for Financial Asset Price Forecasting," Papers 2004.01504, arXiv.org.
- Duan, Yuejiao & Goodell, John W. & Li, Haoran & Li, Xinming, 2022. "Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set," Finance Research Letters, Elsevier, vol. 46(PA).
- Paranhos, Livia, 2021. "Predicting Inflation with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1344, University of Warwick, Department of Economics.
- Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
- Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
- van Dijk Herman K., 2024. "Challenges and Opportunities for Twenty First Century Bayesian Econometricians: A Personal View," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 155-176, April.
- Kevin Moran & Dalibor Stevanovic & Adam Kader Touré, 2022.
"Macroeconomic uncertainty and the COVID‐19 pandemic: Measure and impacts on the Canadian economy,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 379-405, February.
- Kevin Moran & Dalibor Stevanovic & Adam Kader Toure, 2020. "Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy," Working Papers 20-18, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Dec 2020.
- Kevin Moran & Dalibor Stevanovic & Adam Abdel Kader Touré, 2020. "Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy," CIRANO Working Papers 2020s-47, CIRANO.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
- Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"Econometrics of machine learning methods in economic forecasting,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273,
Edward Elgar Publishing.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
- Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
- Yucheng Yang & Yue Pang & Guanhua Huang & Weinan E, 2020. "The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data," Papers 2010.05172, arXiv.org.
- McWilliams, William N. & Isengildina Massa, Olga & Stewart, Shamar L., 2024. "Annual Food Price Inflation Forecasting: A Macroeconomic Random Forest Approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343923, Agricultural and Applied Economics Association.
- Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024.
"Forecasting UK inflation bottom up,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
- Joseph, Andreas & Kalamara, Eleni & Kapetanios, George & Potjagailo, Galina & Chakraborty, Chiranjit, 2021. "Forecasting UK inflation bottom up," Bank of England working papers 915, Bank of England, revised 27 Sep 2022.
- Jozef Barunik & Lubos Hanus, 2023. "Learning Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Oct 2023.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
- Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Rajveer Jat & Daanish Padha, 2024. "Kernel Three Pass Regression Filter," Papers 2405.07292, arXiv.org, revised Jun 2024.
- Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
- Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
- Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
- Clément Cariou & Amélie Charles & Olivier Darné, 2024. "Are national or regional surveys useful for nowcasting regional jobseekers? The case of the French region of Pays‐de‐la‐Loire," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2341-2357, September.
- Florian Huber & Massimiliano Marcellino, 2023. "Coarsened Bayesian VARs -- Correcting BVARs for Incorrect Specification," Papers 2304.07856, arXiv.org, revised May 2023.
- Muhammad Anees Khan & Kumail Abbas & Mazliham Mohd Su’ud & Anas A. Salameh & Muhammad Mansoor Alam & Nida Aman & Mehreen Mehreen & Amin Jan & Nik Alif Amri Bin Nik Hashim & Roslizawati Che Aziz, 2022. "Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
- Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2019. "Machine Learning for Forecasting Excess Stock Returns The Five-Year-View," Graz Economics Papers 2019-06, University of Graz, Department of Economics.
- Johan Brannlund & Helen Lao & Maureen MacIsaac & Jing Yang, 2023. "Predicting Changes in Canadian Housing Markets with Machine Learning," Discussion Papers 2023-21, Bank of Canada.
- Sakai Ando & Taehoon Kim, 2024. "Systematizing Macroframework Forecasting: High-Dimensional Conditional Forecasting with Accounting Identities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(4), pages 1386-1410, December.
- Sabyasachi Kar & Amaani Bashir & Mayank Jain, 2021. "New Approaches to Forecasting Growth and Inflation: Big Data and Machine Learning," IEG Working Papers 446, Institute of Economic Growth.
- Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
- Berigel, Muhammet & Boztaş, Gizem Dilan & Rocca, Antonella & Neagu, Gabriela, 2024. "Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
- Midha, Joshua, 2024. "Assessing Emerging Markets through Transactional Dynamics: A New Multi-Dimensional Valuation Framework," SocArXiv d8jkt, Center for Open Science.
- Iva Glišic, 2024. "A comparison of using MIDAS and LSTM models for GDP nowcasting," Working Papers Bulletin 22, National Bank of Serbia.
- Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Nov 2024.
- Pietro Bogani & Matteo Fontana & Luca Neri & Simone Vantini, 2024. "Calibrated quantile prediction for Growth-at-Risk," Papers 2411.00520, arXiv.org.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Alain Dudoit & Molivann Panot & Thierry Warin, 2021. "Towards a multi-stakeholder Intermodal Trade-Transportation Data-Sharing and Knowledge Exchange Network," CIRANO Project Reports 2021rp-28, CIRANO.
- Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
- Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.