IDEAS home Printed from https://ideas.repec.org/p/nsb/bilten/22.html
   My bibliography  Save this paper

A comparison of using MIDAS and LSTM models for GDP nowcasting

Author

Listed:
  • Iva Glišic

    (National Bank of Serbia)

Abstract

The paper elaborates on machine and deep learning methods, as well as mixed data sampling regression models, used for GDP nowcasting. The aim is to select an adequate model that shows better performance on the data used. The paper provides an answer to the question of whether the use of deep learning methods can improve GDP nowcasting compared to traditional econometric methods, as well as whether the use of specific high-frequency indicators improves the quality of the models used. The paper examines the selection of adequate indicators – both official and those from alternative sources, presents the framework of mixed data sampling regression models and deep learning models used for nowcasting, and gives an assessment of two such models on the example of Serbian GDP. Serbia’s GDP was modelled for the period Q1 2016 – Q2 2023 and the end of the observed period (six quarters) was used for the forecast. Finally, two assessed models were compared – the mixed data sampling regression model and the LSTM neural network. A special focus is placed on ways to improve both models. The LSTM recurrent neural network model had a smaller forecast error, with the use of a combination of official and alternative (high-frequency) indicators, but the mixed data sampling regression model also proved to be a good tool for decision-makers, since its structure allows insight into the ongoing movements impacting GDP dynamics. The use of alternative indicators in nowcasting improved the projections through both presented models.

Suggested Citation

  • Iva Glišic, 2024. "A comparison of using MIDAS and LSTM models for GDP nowcasting," Working Papers Bulletin 22, National Bank of Serbia.
  • Handle: RePEc:nsb:bilten:22
    as

    Download full text from publisher

    File URL: https://www.nbs.rs/documents-eng/publikacije/wp_bulletin/wp_bulletin_03_24_1.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    GDP; nowcasting; MIDAS; neural networks; high-frequency indicators;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsb:bilten:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marko Miseljic (email available below). General contact details of provider: https://edirc.repec.org/data/nbjgvyu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.