IDEAS home Printed from https://ideas.repec.org/p/cpb/discus/441.html
   My bibliography  Save this paper

Forecasting World Trade Using Big Data and Machine Learning Techniques

Author

Listed:
  • Andrei Dubovik
  • Adam Elbourne

    (CPB Netherlands Bureau for Economic Policy Analysis)

  • Bram Hendriks

    (CPB Netherlands Bureau for Economic Policy Analysis)

  • Mark Kattenberg

    (CPB Netherlands Bureau for Economic Policy Analysis)

Abstract

We compare machine learning techniques to a large Bayesian VAR for nowcasting and forecasting world merchandise trade. We focus on how the predictive performance of the machine learning models changes when they have access to a big dataset with 11,017 data series on key economic indicators. The machine learning techniques used include lasso, random forest and linear ensembles. We additionally compare the accuracy of the forecasts during and outside the Great Financial Crisis. We find no statistically significant differences in forecasting accuracy whether with respect to the technique, the dataset used - small or big - or the time period.

Suggested Citation

  • Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:441
    DOI: 10.34932/01mq-sn15
    as

    Download full text from publisher

    File URL: https://www.cpb.nl/sites/default/files/omnidownload/CPB-Discussion-Paper-441-Forecasting-World-Trade-Using-Big-Data-and-Machine-Learning-Techniques.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.34932/01mq-sn15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    4. Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016. "The forecast combination puzzle: A simple theoretical explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
    5. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    7. Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    10. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    11. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    12. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    13. Stamer, Vincent, 2021. "Thinking outside the container: A machine learning approach to forecasting trade flows," Kiel Working Papers 2179, Kiel Institute for the World Economy (IfW Kiel).
    14. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    15. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    16. Soohyon Kim, 2020. "Macroeconomic and Financial Market Analyses and Predictions through Deep Learning," Working Papers 2020-18, Economic Research Institute, Bank of Korea.
    17. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    18. George Milunovich, 2020. "Forecasting Australia's real house price index: A comparison of time series and machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1098-1118, November.
    19. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    20. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    21. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    22. Stéphanie Guichard & Elena Rusticelli, 2011. "A Dynamic Factor Model for World Trade Growth," OECD Economics Department Working Papers 874, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    2. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    3. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    4. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    5. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    6. Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
    7. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    8. Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
    9. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    10. Tesi Aliaj & Milos Ciganovic & Massimiliano Tancioni, 2023. "Nowcasting inflation with Lasso‐regularized vector autoregressions and mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 464-480, April.
    11. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
    12. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    13. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
    14. Gert Bijnens & Shyngys Karimov & Jozef Konings, 2023. "Does Automatic Wage Indexation Destroy Jobs? A Machine Learning Approach," De Economist, Springer, vol. 171(1), pages 85-117, March.
    15. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
    16. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    17. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    18. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    19. Dedola, Luca & Rivolta, Giulia & Stracca, Livio, 2017. "If the Fed sneezes, who catches a cold?," Journal of International Economics, Elsevier, vol. 108(S1), pages 23-41.
    20. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    21. Martin Mandler & Michael Scharnagl & Ute Volz, 2022. "Heterogeneity in Euro Area Monetary Policy Transmission: Results from a Large Multicountry BVAR Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 627-649, March.
    22. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cpbgvnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.