IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2020s-47.html
   My bibliography  Save this paper

Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy

Author

Listed:
  • Kevin Moran
  • Dalibor Stevanovic
  • Adam Abdel Kader Touré

Abstract

This paper constructs a measure of Canadian macroeconomic uncertainty, by ap-plying the Jurado et al. (2015) method to the large database of Fortin-Gagnon et al.(2020). This measure reveals that the COVID-19 pandemic has been associated with a very sharp rise of macroeconomic uncertainty in Canada, confirming other results showing similar big increases in uncertainty in the United States and elsewhere. The paper then uses a structural VAR to compute the impacts on the Canadian economy of uncertainty shocks calibrated to match these recent increases. We show that such shocks lead to severe economic downturns, lower inflation and sizeable accommodating measures from monetary policy. Important distinctions emerge depending on whether the shock is interpreted as originating from US uncertainty –in which case the down-turn is deep but relatively short– or from specifically Canadian uncertainty, which leads to shallower but more protracted declines in economic activity.

Suggested Citation

  • Kevin Moran & Dalibor Stevanovic & Adam Abdel Kader Touré, 2020. "Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy," CIRANO Working Papers 2020s-47, CIRANO.
  • Handle: RePEc:cir:cirwor:2020s-47
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2020s-47.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nathan Bedock & Dalibor Stevanovic, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
    2. Angus Moore, 2017. "Measuring Economic Uncertainty and Its Effects," The Economic Record, The Economic Society of Australia, vol. 93(303), pages 550-575, December.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Caldara, Dario & Fuentes-Albero, Cristina & Gilchrist, Simon & Zakrajšek, Egon, 2016. "The macroeconomic impact of financial and uncertainty shocks," European Economic Review, Elsevier, vol. 88(C), pages 185-207.
    5. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    6. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    8. Colombo, Valentina, 2013. "Economic policy uncertainty in the US: Does it matter for the Euro area?," Economics Letters, Elsevier, vol. 121(1), pages 39-42.
    9. Gunes Kamber & Ozer Karagedikli & Michael Ryan & Tugrul Vehbi, 2016. "International spill-overs of uncertainty shocks: Evidence from a FAVAR," CAMA Working Papers 2016-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    11. Klößner, Stefan & Sekkel, Rodrigo, 2014. "International spillovers of policy uncertainty," Economics Letters, Elsevier, vol. 124(3), pages 508-512.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    14. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    16. Gorodnichenko, Yuriy & Ng, Serena, 2017. "Level and volatility factors in macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 52-68.
    17. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    18. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    19. Lenza, Michele & Primiceri, Giorgio E., 2020. "How to estimate a VAR after March 2020," Working Paper Series 2461, European Central Bank.
    20. Sylvain Leduc & Zheng Liu, 2020. "The Uncertainty Channel of the Coronavirus," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(07), pages 1-05, March.
    21. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    22. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    23. John H. Rogers & Jiawen Xu, 2019. "How Well Does Economic Uncertainty Forecast Economic Activity?," Finance and Economics Discussion Series 2019-085, Board of Governors of the Federal Reserve System (U.S.).
    24. Olivier Blanchard & Roberto Perotti, 2002. "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1329-1368.
    25. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    26. Leduc, Sylvain & Liu, Zheng, 2016. "Uncertainty shocks are aggregate demand shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 20-35.
    27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    2. Serena Ng, 2021. "Modeling Macroeconomic Variations after Covid-19," NBER Working Papers 29060, National Bureau of Economic Research, Inc.
    3. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    4. MORIKAWA Masayuki, 2022. "Uncertainty of Firms' Medium-term Outlook during the COVID-19 Pandemic," Discussion papers 22079, Research Institute of Economy, Trade and Industry (RIETI).
    5. Kevin Moran & Dalibor Stevanovic & Stephane Surprenant, 2024. "Risk Scenarios and Macroeconomic Forecasts," Working Papers 24-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2024.
    6. MORIKAWA Masayuki, 2023. "Price Setting of Firms under Cost Uncertainty," Discussion papers 23040, Research Institute of Economy, Trade and Industry (RIETI).
    7. MORIKAWA Masayuki, 2022. "Firms' Knightian Uncertainty during the COVID-19 Crisis," Discussion papers 22089, Research Institute of Economy, Trade and Industry (RIETI).
    8. Josué Diwambuena & Jean-Paul K. Tsasa, 2021. "The Real Effects of Uncertainty Shocks: New Evidence from Linear and Nonlinear SVAR Models," BEMPS - Bozen Economics & Management Paper Series BEMPS87, Faculty of Economics and Management at the Free University of Bozen.
    9. Pegah Derakhshan & William C. Miller & Jaimie Borisoff & Elham Esfandiari & Sue Forwell & Tal Jarus & Somayyeh Mohammadi & Isabelle Rash & Brodie Sakakibara & Julia Schmidt & Gordon Tao & Noah Tregobo, 2022. "Describing the Function, Disability, and Health of Adults and Older Adults during the Early Coronavirus Restrictions in 2019: An Online Survey," Disabilities, MDPI, vol. 2(4), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansgar Belke & Thomas Osowski, 2019. "International Effects Of Euro Area Versus U.S. Policy Uncertainty: A Favar Approach," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 453-481, January.
    2. Tang, Wenjin & Ding, Saijie & Chen, Hao, 2021. "Economic uncertainty and its spillover networks: Evidence from the Asia-Pacific countries," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    3. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    4. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
    5. Josué Diwambuena & Jean-Paul K. Tsasa, 2021. "The Real Effects of Uncertainty Shocks: New Evidence from Linear and Nonlinear SVAR Models," BEMPS - Bozen Economics & Management Paper Series BEMPS87, Faculty of Economics and Management at the Free University of Bozen.
    6. Tosapol Apaitan & Pongsak Luangaram & Pym Manopimoke, 2022. "Uncertainty in an emerging market economy: evidence from Thailand," Empirical Economics, Springer, vol. 62(3), pages 933-989, March.
    7. Dibiasi, Andreas & Sarferaz, Samad, 2023. "Measuring macroeconomic uncertainty: A cross-country analysis," European Economic Review, Elsevier, vol. 153(C).
    8. Saygin Sahinoz & Evren Erdogan Cosar, 2020. "Quantifying uncertainty and identifying its impacts on the Turkish economy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(2), pages 365-387, May.
    9. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    10. Giovanni Pellegrino & Federico Ravenna & Gabriel Züllig, 2021. "The Impact of Pessimistic Expectations on the Effects of COVID‐19‐Induced Uncertainty in the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 841-869, August.
    11. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Aygun, Gurcan & Wohar, Mark E., 2022. "The macroeconomic impact of economic uncertainty and financial shocks under low and high financial stress," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    12. Tosapol Apaitan & Pongsak Luangaram & Pym Manopimoke, 2020. "Uncertainty and Economic Activity: Does it Matter for Thailand?," PIER Discussion Papers 130, Puey Ungphakorn Institute for Economic Research.
    13. Sangyup Choi & Jeeyeon Phi, 2022. "Impact of Uncertainty Shocks on Income and Wealth Inequality," Working papers 2022rwp-196, Yonsei University, Yonsei Economics Research Institute.
    14. Alessandri, Piergiorgio & Gazzani, Andrea & Vicondoa, Alejandro, 2023. "Are the effects of uncertainty shocks big or small?," European Economic Review, Elsevier, vol. 158(C).
    15. Schüler, Yves S., 2020. "The impact of uncertainty and certainty shocks," Discussion Papers 14/2020, Deutsche Bundesbank.
    16. Kovalenko, Tim, 2021. "Uncertainty shocks and employment fluctuations in Germany: The role of establishment size," Discussion Papers 119, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    17. Tim Kovalenko, 2021. "Uncertainty shocks and employment fluctuations in Germany: the role of establishment size," Working Papers 212, Bavarian Graduate Program in Economics (BGPE).
    18. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.

    More about this item

    Keywords

    COVID-19 Pandemic; Uncertainty; Forecasting; Factors Models; Vector Autoregressions;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2020s-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.