Author
Abstract
This paper introduces a novel transaction-function model for valuing emerging markets, integrating machine learning, agent-based modeling, and multi-method valuation techniques. Traditional valuation models often rely on aggregated economic indicators such as GDP growth and inflation, which lack the granularity needed to capture the transactional dynamics and unique risk factors inherent to emerging markets. In contrast, the proposed model treats each market as a multi-dimensional function of individual transactions, analyzing these interactions through a multi-method framework that includes Discounted Cash Flow (DCF), comparables, precedent transaction, and multiples analysis. By incorporating machine learning algorithms, the model iteratively improves predictive accuracy, dynamically adjusting to new data in volatile and data-sparse environments. Additionally, agent-based simulations provide insights into behavioral responses to policy changes, regulatory shifts, and other market-specific conditions, offering a behavioral layer often missing from traditional approaches. Validation of this model demonstrates a marked improvement in predictive accuracy and adaptability compared to conventional models. This transaction-function approach provides investors and policymakers with a granular, data-driven tool for assessing the true growth potential of emerging markets, paving the way for more informed, context-sensitive investment decisions.
Suggested Citation
Midha, Joshua, 2024.
"Assessing Emerging Markets through Transactional Dynamics: A New Multi-Dimensional Valuation Framework,"
SocArXiv
d8jkt_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:d8jkt_v1
DOI: 10.31219/osf.io/d8jkt_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:d8jkt_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.