The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016.
"Forecasting China's economic growth and inflation,"
China Economic Review, Elsevier, vol. 41(C), pages 46-61.
- Patrick Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," NBER Working Papers 22402, National Bureau of Economic Research, Inc.
- Patrick C. Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," FRB Atlanta Working Paper 2016-7, Federal Reserve Bank of Atlanta.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Frank Smets & Rafael Wouters, 2007.
"Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,"
American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
- Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
- Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
- Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005.
"Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy,"
Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
- Lawrence J. Christiano & Martin S. Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
- Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 2001. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," NBER Working Papers 8403, National Bureau of Economic Research, Inc.
- Lawrence J. Christiano & Martin S. Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Working Paper Series WP-01-08, Federal Reserve Bank of Chicago.
- Lawrence J. Christiano & Martin S. Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Working Papers (Old Series) 0107, Federal Reserve Bank of Cleveland.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Sims, Christopher A & Zha, Tao, 1998.
"Bayesian Methods for Dynamic Multivariate Models,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
- Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
- Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
- Joseph G. Haubrich & Andrew W. Lo, 2012. "Introduction to "Quantifying Systemic Risk"," NBER Chapters, in: Quantifying Systemic Risk, pages 1-10, National Bureau of Economic Research, Inc.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sonja Tilly & Giacomo Livan, 2021. "Macroeconomic forecasting with statistically validated knowledge graphs," Papers 2104.10457, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016.
"Exploiting the monthly data flow in structural forecasting,"
Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
- Giannone, Domenico & Monti , Francesca & Reichlin , Lucrezia, 2014. "Exploiting the monthly data flow in structural forecasting," Bank of England working papers 509, Bank of England.
- Domenico Giannone & Francesca Monti & Lucrezia Reichlin, 2015. "Exploiting the monthly data flow in structural forecasting," Staff Reports 751, Federal Reserve Bank of New York.
- Domenico Giannone & Francesca Monti & Lucrezia Reichlin, 2014. "Exploiting the monthly data-flow in structural forecasting," Discussion Papers 1416, Centre for Macroeconomics (CFM).
- Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2014. "Exploiting the monthly data-flow in structural forecasting," LSE Research Online Documents on Economics 57998, London School of Economics and Political Science, LSE Library.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
- Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021.
"Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors,"
Energy Economics, Elsevier, vol. 96(C).
- Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2019. "Modeling, Forecasting, and Nowcasting U.S. CO2 Emissions Using Many Macroeconomic Predictors," CREATES Research Papers 2019-21, Department of Economics and Business Economics, Aarhus University.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Bekiros Stelios & Paccagnini Alessia, 2015.
"Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
- Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Vigo Pereira, Caio, 2021.
"Portfolio efficiency with high-dimensional data as conditioning information,"
International Review of Financial Analysis, Elsevier, vol. 77(C).
- Caio Vigo Pereira, 2020. "Portfolio Efficiency with High-Dimensional Data as Conditioning Information," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202015, University of Kansas, Department of Economics, revised Sep 2020.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Marie Bessec, 2013.
"Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
- Bessec, M., 2012. "Short-term forecasts of French GDP: a dynamic factor model with targeted predictors," Working papers 409, Banque de France.
- Marie Bessec, 2013. "Short-term forecasts of French GDP: A dynamic factor model with targeted predictors," Post-Print hal-01515605, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-11-09 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.05172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.