IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1521-1538.html
   My bibliography  Save this article

Forecasting UK inflation bottom up

Author

Listed:
  • Joseph, Andreas
  • Potjagailo, Galina
  • Chakraborty, Chiranjit
  • Kapetanios, George

Abstract

We forecast CPI inflation indicators in the United Kingdom using a large set of monthly disaggregated CPI item series covering a sample period of twenty years, and employing a range of forecasting tools to deal with the high dimension of the set of predictors. Although an autoregressive model proofs hard to outperform overall, Ridge regression combined with CPI item series performs strongly in forecasting headline inflation. A range of shrinkage methods yields significant improvement over sub-periods where inflation was rising, falling or in the tails of its distribution. Once CPI item series are exploited, we find little additional forecast gain from including macroeconomic predictors. The forecast performance of non-parametric machine learning methods is relatively weak. Using Shapley values to decompose forecast signals exploited by a Random Forest, we show that the ability of non-parametric tools to flexibly switch between signals from groups of indicators may come at the cost of high variance and, as such, hurt forecast performance.

Suggested Citation

  • Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1521-1538
    DOI: 10.1016/j.ijforecast.2024.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1521-1538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.