Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
- Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013.
"Comparison of simple sum and Divisia monetary aggregates in GDP forecasting: a support vector machines approach,"
Economics Bulletin, AccessEcon, vol. 33(2), pages 1101-1115.
- Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013. "Comparison of Simple Sum and Divisia Monetary Aggregates in GDP Forecasting: A Support Vector Machines Approach," Working Paper series 04_13, Rimini Centre for Economic Analysis.
- Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
- repec:imf:imfdps:2021/024 is not listed on IDEAS
- Ateeb Akhter Shah Syed & Kevin Haeseung Lee, 2021. "Macroeconomic forecasting for Pakistan in a data-rich environment," Applied Economics, Taylor & Francis Journals, vol. 53(9), pages 1077-1091, February.
- Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
- Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmad Alsharef & Sonia & Karan Kumar & Celestine Iwendi, 2022. "Time Series Data Modeling Using Advanced Machine Learning and AutoML," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Ilkin Huseynov & Nazrin Ramazanova & Hikmat Valirzayev, 2022. "Using National Payment System Data to Nowcast Economic Activity in Azerbaijan," IHEID Working Papers 23-2022, Economics Section, The Graduate Institute of International Studies.
- S. Madhumitha & Anubhab Pattanayak & K.S. Kavi Kumar, 2021. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Working Papers 2021-206, Madras School of Economics,Chennai,India.
- Gupta, Somya & Ghardallou, Wafa & Pandey, Dharen Kumar & Sahu, Ganesh P., 2022. "Artificial intelligence adoption in the insurance industry: Evidence using the technology–organization–environment framework," Research in International Business and Finance, Elsevier, vol. 63(C).
- Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
- Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, 2020.
"Mildly explosive dynamics in U.S. fixed income markets,"
European Journal of Operational Research, Elsevier, vol. 287(2), pages 712-724.
- Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, "undated". "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Economics Department, Working Paper Series 1001, Economics Department, Pomona College, revised 12 Feb 2020.
- Silvio Contessi & Pierangelo De Pace & Massimo Guidolin, 2020. "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Working Papers 667, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Silvio Contessi & Pierangelo De Pace & Massimo Guidolin, 2017. "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Globalization Institute Working Papers 324, Federal Reserve Bank of Dallas.
- Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
- Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015.
"The information content of money and credit for US activity,"
Working Paper Series
1803, European Central Bank.
- Seitz, Franz & Albuquerque, Bruno & Baumann, Ursel, 2015. "The Information Content Of Money And Credit For US Activity," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113066, Verein für Socialpolitik / German Economic Association.
- Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022.
"Forecasting US Inflation Using Bayesian Nonparametric Models,"
Papers
2202.13793, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Working Papers 22-05, Federal Reserve Bank of Cleveland.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano, 2023. "Forecasting US Inflation Using Bayesian Nonparametric Models," CEPR Discussion Papers 18244, C.E.P.R. Discussion Papers.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
More about this item
Keywords
macroeconomic factors; machine learning; inflation; supervised machine learning methods; RMSE; MAE; prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9964-:d:886244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.