IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9964-d886244.html
   My bibliography  Save this article

Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach

Author

Listed:
  • Muhammad Anees Khan

    (Management Studies Department, Bahria Business School, Bahria University, Islamabad 04414, Pakistan)

  • Kumail Abbas

    (Bahria Business School, Bahria University, Islamabad 04414, Pakistan)

  • Mazliham Mohd Su’ud

    (Faculty of Computer and Information, Multimedia University, Cyberjaya 50088, Malaysia)

  • Anas A. Salameh

    (Department of Management Information Systems, College of Business Administration, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia)

  • Muhammad Mansoor Alam

    (Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur 50088, Malaysia
    Faculty of Computing, Riphah International University, Islamabad 04414, Pakistan)

  • Nida Aman

    (Bahria Business School, Bahria University, Islamabad 04414, Pakistan)

  • Mehreen Mehreen

    (Department of Management and Humanities, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Amin Jan

    (Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Malaysia)

  • Nik Alif Amri Bin Nik Hashim

    (Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Malaysia)

  • Roslizawati Che Aziz

    (Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Malaysia)

Abstract

Macroeconomic indicators are the key to success in the development of any country and are very much important for the overall economy of any country in the world. In the past, researchers used the traditional methods of regression for estimating macroeconomic variables. However, the advent of efficient machine learning (ML) methods has led to the improvement of intelligent mechanisms for solving time series forecasting problems of various economies around the globe. This study focuses on forecasting the data of the inflation rate and the exchange rate of Pakistan from January 1989 to December 2020. In this study, we used different ML algorithms like k-nearest neighbor (KNN), polynomial regression, artificial neural networks (ANNs), and support vector machine (SVM). The data set was split into two sets: the training set consisted of data from January 1989 to December 2018 for the training of machine algorithms, and the remaining data from January 2019 to December 2020 were used as a test set for ML testing. To find the accuracy of the algorithms used in the study, we used root mean square error (RMSE) and mean absolute error (MAE). The experimental results showed that ANNs archives the least RMSE and MAE compared to all the other algorithms used in the study. While using the ML method for analyzing and forecasting inflation rates based on error prediction, the test set showed that the polynomial regression (degree 1) and ANN methods outperformed SVM and KNN. However, on the other hand, forecasting the exchange rate, SVM RBF outperformed KNN, polynomial regression, and ANNs.

Suggested Citation

  • Muhammad Anees Khan & Kumail Abbas & Mazliham Mohd Su’ud & Anas A. Salameh & Muhammad Mansoor Alam & Nida Aman & Mehreen Mehreen & Amin Jan & Nik Alif Amri Bin Nik Hashim & Roslizawati Che Aziz, 2022. "Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9964-:d:886244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    2. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    3. Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013. "Comparison of simple sum and Divisia monetary aggregates in GDP forecasting: a support vector machines approach," Economics Bulletin, AccessEcon, vol. 33(2), pages 1101-1115.
    4. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    5. repec:imf:imfdps:2021/024 is not listed on IDEAS
    6. Ateeb Akhter Shah Syed & Kevin Haeseung Lee, 2021. "Macroeconomic forecasting for Pakistan in a data-rich environment," Applied Economics, Taylor & Francis Journals, vol. 53(9), pages 1077-1091, February.
    7. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    8. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Alsharef & Sonia & Karan Kumar & Celestine Iwendi, 2022. "Time Series Data Modeling Using Advanced Machine Learning and AutoML," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    2. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    3. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    4. Ilkin Huseynov & Nazrin Ramazanova & Hikmat Valirzayev, 2022. "Using National Payment System Data to Nowcast Economic Activity in Azerbaijan," IHEID Working Papers 23-2022, Economics Section, The Graduate Institute of International Studies.
    5. S. Madhumitha & Anubhab Pattanayak & K.S. Kavi Kumar, 2021. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Working Papers 2021-206, Madras School of Economics,Chennai,India.
    6. Gupta, Somya & Ghardallou, Wafa & Pandey, Dharen Kumar & Sahu, Ganesh P., 2022. "Artificial intelligence adoption in the insurance industry: Evidence using the technology–organization–environment framework," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
    8. Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, 2020. "Mildly explosive dynamics in U.S. fixed income markets," European Journal of Operational Research, Elsevier, vol. 287(2), pages 712-724.
    9. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    10. Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015. "The information content of money and credit for US activity," Working Paper Series 1803, European Central Bank.
    11. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    12. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Papers 2202.13793, arXiv.org.
    13. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    14. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    15. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    16. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    17. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    18. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    20. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9964-:d:886244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.