IDEAS home Printed from https://ideas.repec.org/p/bca/bocadp/23-21.html
   My bibliography  Save this paper

Predicting Changes in Canadian Housing Markets with Machine Learning

Author

Listed:
  • Johan Brannlund
  • Helen Lao
  • Maureen MacIsaac
  • Jing Yang

Abstract

This paper examines whether machine learning (ML) algorithms can outperform a linear model in predicting monthly growth in Canada of both house prices and existing home sales. The aim is to apply two widely used ML techniques (support vector regression and multilayer perceptron) in economic forecasting to understand their scopes and limitations. We find that the two ML algorithms can perform better than a linear model in forecasting house prices and resales. However, the improvement in forecast accuracy is not always statistically significant. Therefore, we cannot systematically conclude using traditional time-series data that the ML models outperform the linear model in a significant way. Future research should explore non-traditional data sets to fully take advantage of ML methods.

Suggested Citation

  • Johan Brannlund & Helen Lao & Maureen MacIsaac & Jing Yang, 2023. "Predicting Changes in Canadian Housing Markets with Machine Learning," Discussion Papers 2023-21, Bank of Canada.
  • Handle: RePEc:bca:bocadp:23-21
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/2023/09/staff-discussion-paper-2023-21/
    File Function: Abstract
    Download Restriction: no

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2023/09/sdp2023-21.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    4. Mikael Khan & Taylor Webley, 2019. "Disentangling the Factors Driving Housing Resales," Staff Analytical Notes 2019-12, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    2. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    3. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    4. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
    5. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    6. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    7. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    8. Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
    9. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    10. Clément Cariou & Amélie Charles & Olivier Darné, 2024. "Are national or regional surveys useful for nowcasting regional jobseekers? The case of the French region of Pays‐de‐la‐Loire," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2341-2357, September.
    11. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    12. Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
    13. Colombo, Emilio & Pelagatti, Matteo, 2020. "Statistical learning and exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
    14. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    15. Yucheng Yang & Yue Pang & Guanhua Huang & Weinan E, 2020. "The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data," Papers 2010.05172, arXiv.org.
    16. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    17. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    18. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    19. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    More about this item

    Keywords

    Econometric and statistical methods; Financial markets; Housing;
    All these keywords.

    JEL classification:

    • A - General Economics and Teaching
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • R2 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis
    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location
    • D2 - Microeconomics - - Production and Organizations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocadp:23-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.