Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbef.2021.100577
Download full text from publisher
References listed on IDEAS
- Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
- Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
- Soh Young In & Dane Rook & Ashby Monk, 2019. "Integrating Alternative Data (Also Known as ESG Data) in Investment Decision Making," Global Economic Review, Taylor & Francis Journals, vol. 48(3), pages 237-260, July.
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Flood, M. D. & Jagadish, H. V. & Raschid, L., 2016. "Big data challenges and opportunities in financial stability monitoring," Financial Stability Review, Banque de France, issue 20, pages 129-142, April.
- M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
- Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
- Li, Xiao, 2020. "When financial literacy meets textual analysis: A conceptual review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
- Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
- Pattnaik, Debidutta & Hassan, Mohammad Kabir & Kumar, Satish & Paul, Justin, 2020. "Trade credit research before and after the global financial crisis of 2008 – A bibliometric overview," Research in International Business and Finance, Elsevier, vol. 54(C).
- Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Fabian Muniesa, 2007. "Market technologies and the pragmatics of prices," Post-Print halshs-00160893, HAL.
- Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Boehmer, Ekkehart & Grammig, Joachim & Theissen, Erik, 2007.
"Estimating the probability of informed trading--does trade misclassification matter?,"
Journal of Financial Markets, Elsevier, vol. 10(1), pages 26-47, February.
- Grammig, Joachim G. & Theissen, Erik, 2002. "Estimating the Probability of Informed Trading: Does Trade Misclassification Matter?," Bonn Econ Discussion Papers 37/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
- Joachim Grammig & Erik Theissen, 2003. "Estimating the Probability of Informed Trading - Does Trade Misclassification Matter?," University of St. Gallen Department of Economics working paper series 2003 2003-01, Department of Economics, University of St. Gallen.
- Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
- José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
- Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
- Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
- Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
- Vikas Sangwan & Harshita & Puneet Prakash & Shveta Singh, 2019. "Financial technology: a review of extant literature," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 37(1), pages 71-88, November.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Mohammed Mubashir Ali & Ashraf Elazouni, 2009. "Finance-based CPM/LOB scheduling of projects with repetitive non-serial activities," Construction Management and Economics, Taylor & Francis Journals, vol. 27(9), pages 839-856.
- Mekhail Mustak & Joni Salminen & Loïc Plé & Jochen Wirtz, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Post-Print hal-03269994, HAL.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
- Tim Loughran & Bill McDonald, 2020. "Textual Analysis in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 12(1), pages 357-375, December.
- Debidutta Pattnaik & Satish Kumar & Bruce Burton, 2021. "Thirty Years of The Australian Accounting Review: A Bibliometric Analysis," Australian Accounting Review, CPA Australia, vol. 31(2), pages 150-164, June.
- Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
- Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
- Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
- Bhatia, Ankita & Chandani, Arti & Chhateja, Jagriti, 2020. "Robo advisory and its potential in addressing the behavioral biases of investors — A qualitative study in Indian context," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
- Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
- Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
- Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
- Dong Yang & Pu Chen & Fuyuan Shi & Chenggong Wen, 2018. "Internet Finance: Its Uncertain Legal Foundations and the Role of Big Data in Its Development," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 721-732, March.
- M. Bee & J. Hambuckers & L. Trapin, 2021. "Estimating large losses in insurance analytics and operational risk using the g-and-h distribution," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1207-1221, July.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Lily Fang & Joel Peress, 2009. "Media Coverage and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(5), pages 2023-2052, October.
- Raúl Gómez Martínez & Miguel Prado Román & Paola Plaza Casado, 2019. "Big Data Algorithmic Trading Systems Based on Investors’ Mood," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 20(2), pages 227-238, April.
- Das, Sanjiv Ranjan, 2014. "Text and Context: Language Analytics in Finance," Foundations and Trends(R) in Finance, now publishers, vol. 8(3), pages 145-261, November.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Tat Lung (Ron) Chan & Nicholas Hale, 2020. "Pricing European-type, early-exercise and discrete barrier options using an algorithm for the convolution of Legendre series," Quantitative Finance, Taylor & Francis Journals, vol. 20(8), pages 1307-1324, August.
- Lee, Charles M. C. & Radhakrishna, Balkrishna, 2000. "Inferring investor behavior: Evidence from TORQ data," Journal of Financial Markets, Elsevier, vol. 3(2), pages 83-111, May.
- Odders-White, Elizabeth R., 2000. "On the occurrence and consequences of inaccurate trade classification," Journal of Financial Markets, Elsevier, vol. 3(3), pages 259-286, August.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
- Makarius, Erin E. & Mukherjee, Debmalya & Fox, Joseph D. & Fox, Alexa K., 2020. "Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization," Journal of Business Research, Elsevier, vol. 120(C), pages 262-273.
- Craig Lewis & Steven Young, 2019. "Fad or future? Automated analysis of financial text and its implications for corporate reporting," Accounting and Business Research, Taylor & Francis Journals, vol. 49(5), pages 587-615, July.
- Satish Kumar & Weng Marc Lim & Nitesh Pandey & J. Christopher Westland, 2021. "20 years of Electronic Commerce Research," Electronic Commerce Research, Springer, vol. 21(1), pages 1-40, March.
- Xiaojun Li & Pan Tang, 2020. "Stock index prediction based on wavelet transform and FCD‐MLGRU," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1229-1237, December.
- Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
- Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
- H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
- Nag, Ashok K & Mitra, Amit, 2002. "Forecasting Daily Foreign Exchange Rates Using Genetically Optimized Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 501-511, November.
- Wall, Larry D., 2018. "Some financial regulatory implications of artificial intelligence," Journal of Economics and Business, Elsevier, vol. 100(C), pages 55-63.
- Daniela Gabor & Sally Brooks, 2017. "The digital revolution in financial inclusion: international development in the fintech era," New Political Economy, Taylor & Francis Journals, vol. 22(4), pages 423-436, July.
- Craja, Patricia & Kim, Alisa & Lessmann, Stefan, 2020. "Deep Learning application for fraud detection in financial statements," IRTG 1792 Discussion Papers 2020-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
- Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016.
"Media-expressed negative tone and firm-level stock returns,"
Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
- Khurshid Ahmad & JingGuang Han & Elaine Hutson & Colm Kearney & Sha Liu, 2016. "Media-expressed negative tone and firm-level stock returns," Open Access publications 10197/8208, Research Repository, University College Dublin.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Manuel Ammann & Nic Schaub, 2021. "Do Individual Investors Trade on Investment-Related Internet Postings?," Management Science, INFORMS, vol. 67(9), pages 5679-5702, September.
- Pattnaik, Debidutta & Hassan, M. Kabir & Dsouza, Arun & Tiwari, Aviral & Devji, Shridev, 2023. "Ex-post facto analysis of cryptocurrency literature over a decade using bibliometric technique," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
- Betton, Sandra & Davis, Frederick & Walker, Thomas, 2018. "Rumor rationales: The impact of message justification on article credibility," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 271-287.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
- Robert M. Bushman & Christopher D. Williams & Regina Wittenberg‐Moerman, 2017. "The Informational Role of the Media in Private Lending," Journal of Accounting Research, Wiley Blackwell, vol. 55(1), pages 115-152, March.
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- D. G. DeBoskey & Yan Luo & Linying Zhou, 2019. "CEO power, board oversight, and earnings announcement tone," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 657-680, February.
- Avramov, Doron & Li, Minwen & Wang, Hao, 2021. "Predicting corporate policies using downside risk: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 1-26.
- David F. Larcker & Anastasia A. Zakolyukina, 2012.
"Detecting Deceptive Discussions in Conference Calls,"
Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 495-540, May.
- Larcker, David F. & Zakolyukina, Anastasia A., 2010. "Detecting Deceptive Discussions in Conference Calls," Research Papers 2060, Stanford University, Graduate School of Business.
- Miwa, Kotaro, 2023. "Divergent opinions on social media," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 182-196.
- Abdi, Farshid & Kormanyos, Emily & Pelizzon, Loriana & Getmansky, Mila & Simon, Zorka, 2021. "Market impact of government communication: The case of presidential tweets," SAFE Working Paper Series 314, Leibniz Institute for Financial Research SAFE, revised 2021.
- Du, Hanyu & Hao, Jing & He, Feng & Xi, Wenze, 2022. "Media sentiment and cross-sectional stock returns in the Chinese stock market," Research in International Business and Finance, Elsevier, vol. 60(C).
More about this item
Keywords
Artificial intelligence; Bibliometric analysis; Finance; Machine learning; Review;All these keywords.
JEL classification:
- B16 - Schools of Economic Thought and Methodology - - History of Economic Thought through 1925 - - - Quantitative and Mathematical
- B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:beexfi:v:32:y:2021:i:c:s2214635021001210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-behavioral-and-experimental-finance .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.