IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v95y2024ipcs1057521924004083.html
   My bibliography  Save this article

A machine learning approach in stress testing US bank holding companies

Author

Listed:
  • Moffo, Ahmadou Mustapha Fonton

Abstract

This paper assesses the utility of machine learning (ML) techniques combined with comprehensive macroeconomic and microeconomic datasets in enhancing risk analysis during stress tests. The analysis unfolds in two stages. I initially benchmark ML’s efficacy in forecasting two pivotal banking variables, net charge-off (NCO) and pre-provision net revenue (PPNR), against traditional linear models. Results underscore the superiority of Random Forest and Adaptive Lasso models in this context. Subsequently, I use these models to project PPNR and NCO for selected bank holding companies under adverse stress scenarios. This exercise feeds into the Tier 1 common equity capital (T1CR) densities simulation. T1CR is the equity capital ratio corrected by some regulatory adjustments to risk-weighted assets. Crucially, findings reveal a pronounced left skew in the T1CR distribution for globally systemically important banks vis-à-vis linear models. By mirroring distress akin to the Great Recession, ML models elucidate intricate macro-financial linkages and enhance risk assessment in downturns.

Suggested Citation

  • Moffo, Ahmadou Mustapha Fonton, 2024. "A machine learning approach in stress testing US bank holding companies," International Review of Financial Analysis, Elsevier, vol. 95(PC).
  • Handle: RePEc:eee:finana:v:95:y:2024:i:pc:s1057521924004083
    DOI: 10.1016/j.irfa.2024.103476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924004083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Machine learning; Big data; Forecasting; Scenarios; Stress-test;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:95:y:2024:i:pc:s1057521924004083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.