IDEAS home Printed from https://ideas.repec.org/p/pen/papers/22-028.html
   My bibliography  Save this paper

Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models

Author

Listed:
  • Francis X. Diebold

    (University of Pennsylvania)

  • Maximilian Gobel

    (University of Lisbon)

  • Philippe Goulet Coulombe

    (University of Quebec)

Abstract

We use "glide charts" (plots of sequences of root mean squared forecast errors as the target date is approached) to evaluate and compare fixed-target forecasts of Arctic sea ice. We first use them to evaluate the simple feature-engineered linear regression (FELR) forecasts of Diebold and Gobel (2022), and to compare FELR forecasts to naive pure-trend benchmark forecasts. Then we introduce a much more sophisticated feature-engineered machine learning (FEML) model, and we use glide charts to evaluate FEML forecasts and compare them to a FELR benchmark. Our substantive results include the frequent appearance of predictability thresholds, which differ across months, meaning that accuracy initially fails to improve as the target date is approached but then increases progressively once a threshold lead time is crossed. Also, we find that FEML can improve appreciably over FELR when forecasting "turning point" months in the annual cycle at horizons of one to three months ahead.

Suggested Citation

  • Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:22-028
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/system/files/working-papers/22-028%20PIER%20Paper%20Submission.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    2. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    3. Eddy Bekkers & Joseph F. Francois & Hugo Rojas†Romagosa, 2018. "Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route," Economic Journal, Royal Economic Society, vol. 128(610), pages 1095-1127, May.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021. "Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
    6. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(2), pages 254-279, April.
    7. Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
    8. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    9. Tom R. Andersson & J. Scott Hosking & María Pérez-Ortiz & Brooks Paige & Andrew Elliott & Chris Russell & Stephen Law & Daniel C. Jones & Jeremy Wilkinson & Tony Phillips & James Byrne & Steffen Tiets, 2021. "Seasonal Arctic sea ice forecasting with probabilistic deep learning," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
    2. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    3. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    4. Yoosoon Chang & J. Isaac Miller & Joon K. Park, 2024. "Shocking Climate: Identifying Economic Damages from Anthropogenic and Natural Climate Change," CAEPR Working Papers 2024-007 Classification-E, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    5. Marina Friedrich & Luca Margaritella & Stephan Smeekes, 2023. "High-Dimensional Granger Causality for Climatic Attribution," Papers 2302.03996, arXiv.org, revised Jun 2024.
    6. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    7. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    8. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    9. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    11. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    12. Jules Hugot & Camilo Umana Dajud, 2017. "Breaking Away from Icebreakers: The Effect of Melting Distances on Trade and Welfare," Working Papers 2017-24, CEPII research center.
    13. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
    14. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    15. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    16. Jennifer Castle & David Hendry, 2020. "Identifying the Causal Role of CO2 during the Ice Ages," Economics Series Working Papers 898, University of Oxford, Department of Economics.
    17. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    18. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    19. repec:hal:journl:hal-04675599 is not listed on IDEAS
    20. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    21. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.

    More about this item

    Keywords

    Seasonal climate forecasting; forecast evaluation and comparison; prediction;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:22-028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.