IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v46y2022ipas1544612321003159.html
   My bibliography  Save this article

Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set

Author

Listed:
  • Duan, Yuejiao
  • Goodell, John W.
  • Li, Haoran
  • Li, Xinming

Abstract

While data sets used for forecasting can now be greatly improved, expanding data and information size also exposes weaknesses in traditional forecast models. We assess machine learning methods for forecasting monetary policy actions and concomitant macroeconomic risks. We construct an expanded information set on Chinese systemic risk, confirming that this set contains additional information useful for macroeconomic forecasting. We find that machine learning processes offer significant improvement for macroeconomic forecasting, with quantile regression forest exhibiting superior out-of-sample prediction accuracy compared with traditional methodologies. These findings will be of great interest to policy makers and investors.

Suggested Citation

  • Duan, Yuejiao & Goodell, John W. & Li, Haoran & Li, Xinming, 2022. "Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set," Finance Research Letters, Elsevier, vol. 46(PA).
  • Handle: RePEc:eee:finlet:v:46:y:2022:i:pa:s1544612321003159
    DOI: 10.1016/j.frl.2021.102273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321003159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.102273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nucera, Federico & Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2016. "The information in systemic risk rankings," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 461-475.
    2. Thomas Piketty & Li Yang & Gabriel Zucman, 2019. "Capital Accumulation, Private Property, and Rising Inequality in China, 1978–2015," American Economic Review, American Economic Association, vol. 109(7), pages 2469-2496, July.
    3. Ye, Wuyi & Guo, Ranran & Jiang, Ying & Liu, Xiaoquan & Deschamps, Bruno, 2019. "Professional macroeconomic forecasts and Chinese commodity futures prices," Finance Research Letters, Elsevier, vol. 28(C), pages 130-136.
    4. Fang, Libing & Sun, Boyang & Li, Huijing & Yu, Honghai, 2018. "Systemic risk network of Chinese financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 190-206.
    5. Gianni De Nicolò & Marcella Lucchetta, 2011. "Systemic Risks and the Macroeconomy," NBER Chapters, in: Quantifying Systemic Risk, pages 113-148, National Bureau of Economic Research, Inc.
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Yi Huang & Marco Pagano & Ugo Panizza, 2020. "Local Crowding‐Out in China," Journal of Finance, American Finance Association, vol. 75(6), pages 2855-2898, December.
    8. Kaiji Chen & Jue Ren & Tao Zha, 2018. "The Nexus of Monetary Policy and Shadow Banking in China," American Economic Review, American Economic Association, vol. 108(12), pages 3891-3936, December.
    9. Zhang, Chengsi & Zheng, Ning, 2020. "Monetary policy and financial investments of nonfinancial firms: New evidence from China," China Economic Review, Elsevier, vol. 60(C).
    10. Wu, Fei, 2019. "Sectoral contributions to systemic risk in the Chinese stock market," Finance Research Letters, Elsevier, vol. 31(C).
    11. Fenghua Wen & Feng Min & Yue‐Jun Zhang & Can Yang, 2019. "Crude oil price shocks, monetary policy, and China's economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 812-827, April.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Gianni De Nicolò & Marcella Lucchetta, 2017. "Forecasting Tail Risks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 159-170, January.
    14. Jin, Xiaoye, 2018. "Downside and upside risk spillovers from China to Asian stock markets: A CoVaR-copula approach," Finance Research Letters, Elsevier, vol. 25(C), pages 202-212.
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Edward Glaeser & Wei Huang & Yueran Ma & Andrei Shleifer, 2017. "A Real Estate Boom with Chinese Characteristics," Journal of Economic Perspectives, American Economic Association, vol. 31(1), pages 93-116, Winter.
    17. Illing, Mark & Liu, Ying, 2006. "Measuring financial stress in a developed country: An application to Canada," Journal of Financial Stability, Elsevier, vol. 2(3), pages 243-265, October.
    18. Zhang, Xingmin & Fu, Qiang & Lu, Liping & Wang, Qingyu & Zhang, Shuai, 2021. "Bank liquidity creation, network contagion and systemic risk: Evidence from Chinese listed banks," Journal of Financial Stability, Elsevier, vol. 53(C).
    19. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    20. Marcella Lucchetta & Mr. Gianni De Nicolo, 2012. "Systemic Real and Financial Risks: Measurement, Forecasting, and Stress Testing," IMF Working Papers 2012/058, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Guansan Du & Frank Elston, 2022. "RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models," Operations Management Research, Springer, vol. 15(3), pages 925-940, December.
    3. Wang, Dan & Chen, Zhi & Florescu, Ionuţ & Wen, Bingyang, 2023. "A sparsity algorithm for finding optimal counterfactual explanations: Application to corporate credit rating," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Carvajal-Patiño, Daniel & Ramos-Pollán, Raul, 2022. "Synthetic data generation with deep generative models to enhance predictive tasks in trading strategies," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Yankol-Schalck, Meryem, 2022. "The value of cross-data set analysis for automobile insurance fraud detection," Research in International Business and Finance, Elsevier, vol. 63(C).
    6. Mavruk, Taylan, 2022. "Analysis of herding behavior in individual investor portfolios using machine learning algorithms," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Li, Haoran, 2021. "Downside risk, financial conditions and systemic risk in China," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    2. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    3. Hyeongwoo Kim & Wen Shi & Hyun Hak Kim, 2020. "Forecasting financial stress indices in Korea: a factor model approach," Empirical Economics, Springer, vol. 59(6), pages 2859-2898, December.
    4. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    5. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    6. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    7. Min, Feng & Wen, Fenghua & Wang, Xiong, 2022. "Measuring the effects of monetary and fiscal policy shocks on domestic investment in China," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 395-412.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Nowcasting tail risk to economic activity at a weekly frequency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
    9. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    10. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    11. Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
    12. Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Apr 2023.
    13. Das, Sanjiv R. & Kalimipalli, Madhu & Nayak, Subhankar, 2022. "Banking networks, systemic risk, and the credit cycle in emerging markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    14. Mikhail Stolbov & Maria Shchepeleva, 2018. "Systemic risk in Europe: deciphering leading measures, common patterns and real effects," Annals of Finance, Springer, vol. 14(1), pages 49-91, February.
    15. Cincinelli, Peter & Pellini, Elisabetta & Urga, Giovanni, 2021. "Leverage and systemic risk pro-cyclicality in the Chinese financial system," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Cincinelli, Peter & Pellini, Elisabetta & Urga, Giovanni, 2022. "Systemic risk in the Chinese financial system: A panel Granger causality analysis," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
    18. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    19. Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
    20. Caporin, Massimiliano & Costola, Michele & Garibal, Jean-Charles & Maillet, Bertrand, 2022. "Systemic risk and severe economic downturns: A targeted and sparse analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).

    More about this item

    Keywords

    Systemic risk; Macroeconomic forecast; Machine learning; Quantile Regression Forest;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:46:y:2022:i:pa:s1544612321003159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.