IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v22y2024i2d10.1007_s40953-024-00384-z.html
   My bibliography  Save this article

Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach

Author

Listed:
  • Pijush Kanti Das

    (Indian Institute of Foreign Trade)

  • Prabir Kumar Das

    (Indian Institute of Foreign Trade)

Abstract

In this study, we investigate and apply the models from the machine learning (ML) paradigm to forecast the inflation rate. The models identified are ridge, lasso, elastic net, random forest, and artificial neural network. We carry out the analysis using a data set with 56 features of 132 monthly observations from January 2012 to December 2022. The random forest (RF) model can forecast the inflation rate with greater accuracy than other ML models. A comparison to benchmark econometric models like auto-regressive integrated moving average demonstrates the superior performance of the RF model. Moreover, nonlinear ML models are proven to be more successful than a linear ML or time series models and this is mostly due to the unpredictability and interactions of variables. It indicates that the significance of nonlinear structures for forecasting inflation is important. Furthermore, the ML models outweigh the benchmark econometric model in forecasting the undulations due to the COVID-19 impact. The findings in this study support the benefit of applying ML models to forecast the inflation rate. Even without considering the sporadicity of pandemic, nonlinear model like artificial neural network (ANN) outweighs other models. Additionally, the ML models like RF and ANN model yield variable importance measures for each explanatory variable. ML models shows capability to not only better forecasting but also able to provide the insight regarding the covariates for improved forecasting results and policy prescriptions.

Suggested Citation

  • Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
  • Handle: RePEc:spr:jqecon:v:22:y:2024:i:2:d:10.1007_s40953-024-00384-z
    DOI: 10.1007/s40953-024-00384-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-024-00384-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-024-00384-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. de Brouwer, Gordon & Ericsson, Neil R, 1998. "Modeling Inflation in Australia," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 433-449, October.
    5. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    6. Robert E. Hall & Thomas J. Sargent, 2018. "Short-Run and Long-Run Effects of Milton Friedman's Presidential Address," Journal of Economic Perspectives, American Economic Association, vol. 32(1), pages 121-134, Winter.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Liu, Lon-Mu, 1986. "Identification of time series models in the presence of calendar variation," International Journal of Forecasting, Elsevier, vol. 2(3), pages 357-372.
    9. Gordon, Robert J, 1975. "The Demand for and Supply of Inflation," Journal of Law and Economics, University of Chicago Press, vol. 18(3), pages 807-836, December.
    10. Ashima Goyal & Prashant Parab, 2019. "Modeling heterogeneity and rationality of inflation expectations across Indian households," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2019-02, Indira Gandhi Institute of Development Research, Mumbai, India.
    11. Gour Sundar Mitra Thakur & Rupak Bhattacharyya & Seema Sarkar Mondal, 2016. "Artificial Neural Network Based Model for Forecasting of Inflation in India," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 8(1), pages 87-100, March.
    12. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    13. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    14. Rudra P. Pradhan, 2011. "Forecasting Inflation in India: An Application of ANN Model," International Journal of Asian Business and Information Management (IJABIM), IGI Global, vol. 2(2), pages 64-73, April.
    15. Das, Abhiman & Lahiri, Kajal & Zhao, Yongchen, 2019. "Inflation expectations in India: Learning from household tendency surveys," International Journal of Forecasting, Elsevier, vol. 35(3), pages 980-993.
    16. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    17. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    18. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    19. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    20. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    21. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    22. Gordon, Robert J, 1975. "The Demand for and Supply of Inflation: Reply to Brunner's Comments," Journal of Law and Economics, University of Chicago Press, vol. 18(3), pages 871-874, December.
    23. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    24. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    2. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    3. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    4. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    5. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    6. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    7. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    8. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    9. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    10. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Working Papers 22-05, Federal Reserve Bank of Cleveland.
    11. Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.
    12. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    13. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    14. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    17. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    18. Clément Cariou & Amélie Charles & Olivier Darné, 2024. "Are national or regional surveys useful for nowcasting regional jobseekers? The case of the French region of Pays‐de‐la‐Loire," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2341-2357, September.
    19. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    20. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.

    More about this item

    Keywords

    Inflation; Forecasting; Random forest; Artificial neural networks; Machine learning;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:22:y:2024:i:2:d:10.1007_s40953-024-00384-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.