IDEAS home Printed from https://ideas.repec.org/f/c/pke276.html
   My authors  Follow this author

Scott John Kelly

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Kelly, S. & Pollitt, M. & Crawford-Brown, D., 2012. "Building performance evaluation and certification in the UK: a critical review of SAP?," Cambridge Working Papers in Economics 1238, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Christilyn Juarez Arcayna & Jonelyn Juarez Arcayna & Resty Juarez Arcayna, 2021. "Implementation of 4PS Conditional Cash Transfer and Students’ School Attendance in Don Vicente Romualdez National High School," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 5(12), pages 907-922, December.
    2. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    3. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    4. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    5. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Higney, Anthony & Gibb, Kenneth, 2024. "Net zero retrofit of older tenement housing – The contribution of cost benefit analysis to wider evaluation of a demonstration project," Energy Policy, Elsevier, vol. 191(C).
    7. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    8. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    9. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.

  2. Kelly, S., 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Cambridge Working Papers in Economics 1139, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Jakučionytė-Skodienė, Miglė & Liobikienė, Genovaitė, 2023. "Changes in energy consumption and CO2 emissions in the Lithuanian household sector caused by environmental awareness and climate change policy," Energy Policy, Elsevier, vol. 180(C).
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    4. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    6. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    7. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    8. Marin, Giovanni & Palma, Alessandro, 2016. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Energy: Resources and Markets 230687, Fondazione Eni Enrico Mattei (FEEM).
    9. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    10. Stutterecker, Werner & Blümel, Ernst, 2012. "Energy plus standard in buildings constructed by housing associations?," Energy, Elsevier, vol. 48(1), pages 56-65.
    11. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    12. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    13. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    14. Comodi, Gabriele & Cioccolanti, Luca & Renzi, Massimiliano, 2014. "Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency," Energy, Elsevier, vol. 68(C), pages 92-103.
    15. Taylor, Nicholas W. & Jones, Pierce H. & Kipp, M. Jennison, 2014. "Targeting utility customers to improve energy savings from conservation and efficiency programs," Applied Energy, Elsevier, vol. 115(C), pages 25-36.
    16. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    17. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    18. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    19. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
    20. Kelly, S. & Pollitt, M. & Crawford-Brown, D., 2012. "Building performance evaluation and certification in the UK: a critical review of SAP?," Cambridge Working Papers in Economics 1238, Faculty of Economics, University of Cambridge.
    21. Rosenberg, Eva, 2014. "Calculation method for electricity end-use for residential lighting," Energy, Elsevier, vol. 66(C), pages 295-304.
    22. Dineen, D. & Rogan, F. & Ó Gallachóir, B.P., 2015. "Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source," Energy, Elsevier, vol. 90(P1), pages 759-767.
    23. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    24. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    25. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    26. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    27. Zhang, Tao & Siebers, Peer-Olaf & Aickelin, Uwe, 2012. "A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK," Energy Policy, Elsevier, vol. 47(C), pages 102-110.
    28. Xia Wang & Jiachen Yuan & Kairui You & Xianrui Ma & Zhaoji Li, 2023. "Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    29. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    30. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    31. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    32. Huebner, Gesche M. & Shipworth, David, 2017. "All about size? – The potential of downsizing in reducing energy demand," Applied Energy, Elsevier, vol. 186(P2), pages 226-233.
    33. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    34. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    35. Zheng, Jiajia & Dang, Yongjie & Assad, Ullah, 2024. "Household energy consumption, energy efficiency, and household income–Evidence from China," Applied Energy, Elsevier, vol. 353(PA).
    36. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    37. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    38. Никола Гущеров, 2018. "Моделиране На Потребителското Поведение На Пазара На Електроенергия," Economics 21, D. A. Tsenov Academy of Economics, Svishtov, Bulgaria, issue 1 Year 20, pages 25-43.
    39. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    40. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    41. Wang, Xia & Ding, Chao & Cai, Weiguang & Luo, Lizi & Chen, Mingman, 2021. "Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach," Energy, Elsevier, vol. 237(C).
    42. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    43. Guo, Ji & Xu, Yuanjing & Qu, Yao & Wang, Yiting & Wu, Xianhua, 2023. "Exploring factors affecting household energy consumption in the internet era: Empirical evidence from Chinese households," Energy Policy, Elsevier, vol. 183(C).
    44. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    45. Annette Steingrube & Keyu Bao & Stefan Wieland & Andrés Lalama & Pithon M. Kabiro & Volker Coors & Bastian Schröter, 2021. "A Method for Optimizing and Spatially Distributing Heating Systems by Coupling an Urban Energy Simulation Platform and an Energy System Model," Resources, MDPI, vol. 10(5), pages 1-19, May.
    46. Estiri, Hossein, 2014. "Energy Planning in the Big Data Era: A Theme Study of the Residential Sector," EconStor Conference Papers 106936, ZBW - Leibniz Information Centre for Economics.
    47. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    48. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    49. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    50. Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
    51. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    52. Neves, Catarina & Oliveira, Tiago, 2021. "Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries," Applied Energy, Elsevier, vol. 298(C).
    53. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    54. Circella, Giovanni & Johnston, Robert & Holguin, Andrew & Lehmer, Eric & Wang, Yang & McCoy, Michael, 2013. "Updating the PECAS Modeling Framework to Include Energy Use Data for Buildings," Institute of Transportation Studies, Working Paper Series qt8jr035gh, Institute of Transportation Studies, UC Davis.
    55. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.

  3. Kelly, S. & Pollitt, M., 2011. "The Local Dimension of Energy," Cambridge Working Papers in Economics 1114, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Bale, Catherine S.E. & Foxon, Timothy J. & Hannon, Matthew J. & Gale, William F., 2012. "Strategic energy planning within local authorities in the UK: A study of the city of Leeds," Energy Policy, Elsevier, vol. 48(C), pages 242-251.
    2. Platchkov, L. & Pollitt, M. G. & Reiner, D. & Shaorshadze, I., 2011. "2010 EPRG Public Opinion Survey: Policy Preferences and Energy Saving Measures," Cambridge Working Papers in Economics 1149, Faculty of Economics, University of Cambridge.
    3. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    4. Ahn, Young-Hwan & Woo, Jung-Hun & Wagner, Fabian & Yoo, Seung Jick, 2019. "Downscaled energy demand projection at the local level using the Iterative Proportional Fitting procedure," Applied Energy, Elsevier, vol. 238(C), pages 384-400.
    5. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
    6. Binod Prasad Koirala & Ellen van Oost & Henny van der Windt, 2020. "Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat," Energies, MDPI, vol. 13(11), pages 1-22, June.
    7. Tingey, Margaret & Webb, Janette, 2020. "Governance institutions and prospects for local energy innovation: laggards and leaders among UK local authorities," Energy Policy, Elsevier, vol. 138(C).
    8. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.

  4. Kelly, S. & Pollitt, M.G., 2009. "Making Combined Heat and Power District Heating(CHP-DH) networks in the United Kingdom economically viable: a comparative approach," Cambridge Working Papers in Economics 0945, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    2. Bale, Catherine S.E. & Foxon, Timothy J. & Hannon, Matthew J. & Gale, William F., 2012. "Strategic energy planning within local authorities in the UK: A study of the city of Leeds," Energy Policy, Elsevier, vol. 48(C), pages 242-251.
    3. Aoife Brophy Haney & Michael G. Pollitt, 2010. "New Models of Public Ownership in Energy," Working Papers EPRG 1030, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Chakrabarti, Auyon & Proeglhoef, Rafael & Turu, Gonzalo Bustos & Lambert, Romain & Mariaud, Arthur & Acha, Salvador & Markides, Christos N. & Shah, Nilay, 2019. "Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes," Energy, Elsevier, vol. 176(C), pages 805-815.

Articles

  1. Huang, Li & Kelly, Scott & Shi, Xunpeng & Lv, Kangjuan & Lu, Xuan & Giurco, Damien, 2022. "Maximizing the effectiveness of carbon emissions abatement in China across carbon communities," Energy Economics, Elsevier, vol. 106(C).

    Cited by:

    1. Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Tianfeng Zhou & Cong Chen & Cong Dong & Qinghua Li, 2024. "Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation," Sustainability, MDPI, vol. 16(22), pages 1-30, November.
    3. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    4. Wu, Liangpeng & Xu, Chengzhen & Zhu, Qingyuan & Zhou, Dequn, 2024. "Multiple energy price distortions and improvement of potential energy consumption structure in the energy transition," Applied Energy, Elsevier, vol. 362(C).

  2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Cited by:

    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Ren, Ting & Li, Ran & Li, Xin, 2023. "Bi-level multi-objective robust optimization for performance improvements in integrated energy system with solar fuel production," Renewable Energy, Elsevier, vol. 219(P1).
    3. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    4. Yiming Xiao & Zhijun Feng & Xinying Li & Shangrui Wang, 2024. "Low-carbon transition and energy poverty: quasi-natural experiment evidence from China’s low-carbon city pilot policy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    5. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2024. "Enhancing accuracy of flexibility characterization in integrated energy system design: A variable temporal resolution optimization method," Energy, Elsevier, vol. 288(C).
    6. Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).
    7. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    8. Bodong, Song & Wiseong, Jin & Chengmeng, Li & Khakichi, Aroos, 2023. "Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program," Energy, Elsevier, vol. 269(C).
    9. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M., 2024. "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response," Energy, Elsevier, vol. 289(C).
    10. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    11. Amir Ali Safaei Pirooz & Mohammad J. Sanjari & Young-Jin Kim & Stuart Moore & Richard Turner & Wayne W. Weaver & Dipti Srinivasan & Josep M. Guerrero & Mohammad Shahidehpour, 2023. "Adaptation of High Spatio-Temporal Resolution Weather/Load Forecast in Real-World Distributed Energy-System Operation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    12. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    13. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    14. Ma, Xuran & Wang, Meng & Wang, Peng & Wang, Yixin & Mao, Ding & Kosonen, Risto, 2024. "Energy supply structure optimization of integrated energy system considering load uncertainty at the planning stage," Energy, Elsevier, vol. 305(C).
    15. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    16. Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
    17. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

  3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).

    Cited by:

    1. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    2. Abdellatif Soussi & Enrico Zero & Alessandro Bozzi & Roberto Sacile, 2024. "Enhancing Energy Systems and Rural Communities through a System of Systems Approach: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-43, October.
    3. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    4. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    5. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2022. "Optimal strategy of electricity and natural gas aggregators in the energy and balance markets," Energy, Elsevier, vol. 257(C).
    6. Lyu, Chenghao & Wang, Weiquan & Wang, Junyue & Bai, Yilin & Song, Zhengxiang & Wang, Wei & Meng, Jinhao, 2024. "The role of co-optimization in trading off cost and frequency regulation service for industrial microgrids," Applied Energy, Elsevier, vol. 375(C).
    7. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2024. "Multi-time scale dynamic operation optimization method for industrial park electricity-heat-gas integrated energy system considering demand elasticity," Energy, Elsevier, vol. 293(C).
    8. Yan, Zhongzhen & Zhu, Xinyuan & Chang, Yiming & Wang, Xianglong & Ye, Zhiwei & Xu, Zhigang & Fars, Ashk, 2023. "Renewable energy effects on energy management based on demand response in microgrids environment," Renewable Energy, Elsevier, vol. 213(C), pages 205-217.
    9. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).

  4. Baniya, Bishal & Giurco, Damien & Kelly, Scott, 2021. "Green growth in Nepal and Bangladesh: Empirical analysis and future prospects," Energy Policy, Elsevier, vol. 149(C).

    Cited by:

    1. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad & Kyriakou, Ioannis, 2022. "Is green growth affected by financial risks? New global evidence from asymmetric and heterogeneous analysis," Energy Economics, Elsevier, vol. 113(C).
    2. Baitong Li & Jian Li & Chen Liu & Xinyan Yao & Jingxuan Dong & Meijun Xia, 2023. "Provincial Inclusive Green Growth Efficiency in China: Spatial Correlation Network Investigation and Its Influence Factors," Land, MDPI, vol. 12(3), pages 1-24, March.
    3. Asma Awan & Sidra Nawaz, 2022. "Towards Green Growth: Monitoring Progress and Investigating Its Determinants in South Asia," Journal of Economic Impact, Science Impact Publishers, vol. 4(3), pages 252-264.
    4. Esposito, Luca, 2023. "Renewable energy consumption and per capita income: An empirical analysis in Finland," Renewable Energy, Elsevier, vol. 209(C), pages 558-568.
    5. Feng, Nan & Ge, Jiamin, 2024. "How does fiscal policy affect the green low-carbon transition from the perspective of the evolutionary game?," Energy Economics, Elsevier, vol. 134(C).
    6. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    7. Rabie Said & Muhammad Ishaq Bhatti & Ahmed Imran Hunjra, 2022. "Toward Understanding Renewable Energy and Sustainable Development in Developing and Developed Economies: A Review," Energies, MDPI, vol. 15(15), pages 1-12, July.
    8. Rashid Latief & Yusheng Kong & Sohail Ahmad Javeed & Usman Sattar, 2021. "Carbon Emissions in the SAARC Countries with Causal Effects of FDI, Economic Growth and Other Economic Factors: Evidence from Dynamic Simultaneous Equation Models," IJERPH, MDPI, vol. 18(9), pages 1-22, April.
    9. Dong, Kangyin & Wang, Bo & Zhao, Jun & Taghizadeh-Hesary, Farhad, 2022. "Mitigating carbon emissions by accelerating green growth in China," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 226-243.
    10. Rui Zhou, 2022. "Measurement and Spatial-Temporal Characteristics of Inclusive Green Growth in China," Land, MDPI, vol. 11(8), pages 1-36, July.
    11. Li, Jiaman & Dong, Kangyin & Taghizadeh-Hesary, Farhad & Wang, Kun, 2022. "3G in China: How green economic growth and green finance promote green energy?," Renewable Energy, Elsevier, vol. 200(C), pages 1327-1337.
    12. Aryal, Sushil & Dhakal, Shobhakar & KC, Samrat, 2023. "Integrated analysis of end-use electrification and cross-border electricity trade policies for hydropower enabled energy transformation in Nepal," Renewable Energy, Elsevier, vol. 219(P1).

  5. Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.

    Cited by:

    1. Huang, Li & Kelly, Scott & Shi, Xunpeng & Lv, Kangjuan & Lu, Xuan & Giurco, Damien, 2022. "Maximizing the effectiveness of carbon emissions abatement in China across carbon communities," Energy Economics, Elsevier, vol. 106(C).
    2. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).

  6. Scott Thacker & Scott Kelly & Raghav Pant & Jim W. Hall, 2018. "Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 134-150, January.

    Cited by:

    1. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.
    2. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    3. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    4. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    5. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    6. Linda Menk & Christian Neuwirth & Stefan Kienberger, 2020. "Mapping the Structure of Social Vulnerability Systems for Malaria in East Africa," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    7. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

  7. Rutovitz, Jay & Oliva H., Sebastian & McIntosh, Lawrence & Langham, Ed & Teske, Sven & Atherton, Alison & Kelly, Scott, 2018. "Local network credits and local electricity trading: Results of virtual trials and the policy implications," Energy Policy, Elsevier, vol. 120(C), pages 324-334.

    Cited by:

    1. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    2. Sturmberg, B.C.P. & Shaw, M.E. & Mediwaththe, C.P. & Ransan-Cooper, H. & Weise, B. & Thomas, M. & Blackhall, L., 2021. "A mutually beneficial approach to electricity network pricing in the presence of large amounts of solar power and community-scale energy storage," Energy Policy, Elsevier, vol. 159(C).

  8. Hamilton, Thomas Gerard Adam & Kelly, Scott, 2017. "Low carbon energy scenarios for sub-Saharan Africa: An input-output analysis on the effects of universal energy access and economic growth," Energy Policy, Elsevier, vol. 105(C), pages 303-319.

    Cited by:

    1. Wang, Qiang & Jiang, Feng & Li, Rongrong, 2022. "Assessing supply chain greenness from the perspective of embodied renewable energy – A data envelopment analysis using multi-regional input-output analysis," Renewable Energy, Elsevier, vol. 189(C), pages 1292-1305.
    2. Mary Donkor & Yusheng Kong & Emmanuel Kwaku Manu & Albert Henry Ntarmah & Florence Appiah-Twum, 2022. "Economic Growth and Environmental Quality: Analysis of Government Expenditure and the Causal Effect," IJERPH, MDPI, vol. 19(17), pages 1-23, August.
    3. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    4. Garba, Ifeoluwa & Bellingham, Richard, 2021. "Energy poverty: Estimating the impact of solid cooking fuels on GDP per capita in developing countries - Case of sub-Saharan Africa," Energy, Elsevier, vol. 221(C).
    5. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    6. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    7. Philip Chukwunonso Bosah & Shixiang Li & Gideon Kwaku Minua Ampofo & Daniel Akwasi Asante & Zhanqi Wang, 2020. "The Nexus Between Electricity Consumption, Economic Growth, and CO 2 Emission: An Asymmetric Analysis Using Nonlinear ARDL and Nonparametric Causality Approach," Energies, MDPI, vol. 13(5), pages 1-24, March.
    8. Adedoyin Isola Lawal, 2023. "The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO 2 in Africa: Evidence from Frequency Domain Estimates," Energies, MDPI, vol. 16(3), pages 1-27, January.
    9. Espoir, Delphin Kamanda & Sunge, Regret & Bannor, Frank, 2021. "Economic growth and CO₂ emissions: Evidence from heterogeneous panel of African countries using bootstrap Granger causality," EconStor Preprints 235141, ZBW - Leibniz Information Centre for Economics.
    10. Qureshi, Muhammad Imran & Qayyum, Shazia & Nassani, Abdelmohsen A. & Aldakhil, Abdullah Mohammed & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2019. "Management of various socio-economic factors under the United Nations sustainable development agenda," Resources Policy, Elsevier, vol. 64(C).
    11. Liu, Lirong & Huang, Gordon & Baetz, Brian & Cheng, Guanhui & Pittendrigh, Scott M. & Pan, Siyue, 2020. "Input-output modeling analysis with a detailed disaggregation of energy sectors for climate change policy-making: A case study of Saskatchewan, Canada," Renewable Energy, Elsevier, vol. 151(C), pages 1307-1317.

  9. Distefano, Tiziano & Kelly, Scott, 2017. "Are we in deep water? Water scarcity and its limits to economic growth," Ecological Economics, Elsevier, vol. 142(C), pages 130-147.

    Cited by:

    1. Sarah-Louise Ruder & Sophia Rose Sanniti, 2019. "Transcending the Learned Ignorance of Predatory Ontologies: A Research Agenda for an Ecofeminist-Informed Ecological Economics," Sustainability, MDPI, vol. 11(5), pages 1-29, March.
    2. Islam,Asif Mohammed & Hyland,Marie Caitriona, 2018. "The Drivers and Impacts of Water Infrastructure Reliability : A Global Analysis of Manufacturing Firms," Policy Research Working Paper Series 8637, The World Bank.
    3. Distefano, Tiziano & Chiarotti, Guido & Laio, Francesco & Ridolfi, Luca, 2019. "Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness," Ecological Economics, Elsevier, vol. 159(C), pages 122-132.
    4. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    5. Xia, Wenjun & Chen, Xiaohong & Song, Chao & Pérez-Carrera, Alejo, 2022. "Driving factors of virtual water in international grain trade: A study for belt and road countries," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Thando Lwandile Mthembu & Richard Kunz & Shaeden Gokool & Tafadzwanashe Mabhaudhi, 2024. "The Use of Agricultural Databases for Crop Modeling: A Scoping Review," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    7. Feng, Kuishuang & Chen, Xiangjie, 2023. "Water and Land Stress in Bolivia, Colombia, Ecuador, and Peru under Coupled Climate-Socioeconomic Scenarios," IDB Publications (Working Papers) 13093, Inter-American Development Bank.
    8. Hassan, Wasim & Manzoor, Talha & Jaleel, Hassan & Muhammad, Abubakr, 2021. "Demand-based water allocation in irrigation systems using mechanism design: A case study from Pakistan," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Darshana Rajapaksa & Robert Gifford & Benno Torgler & María A. García-Valiñas & Wasantha Athukorala & Shunsuke Managi & Clevo Wilson, 2019. "Do monetary and non-monetary incentives influence environmental attitudes and behavior? Evidence from an experimental analysis," Post-Print hal-03191523, HAL.
    10. Hyland, Marie & Russ, Jason, 2019. "Water as destiny – The long-term impacts of drought in sub-Saharan Africa," World Development, Elsevier, vol. 115(C), pages 30-45.
    11. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    12. Ting Wang & Jinjun You & Zhenzhen Ma & Ping Xiao, 2022. "A Hierarchical Index System for Analysis of Water Supply-Demand Situation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4485-4498, September.
    13. Na Qiao & Lan Fang & Lan Mu, 2020. "Evaluating the impacts of water resources technology progress on development and economic growth over the Northwest, China," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    14. Huilin Li & Zuomin Wen, 2023. "A Market-Based Payment Study for Forest Water Purification Service in Loess Plateau of Yellow River Basin, China," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    15. Sinha, Avik & Driha, Oana & Balsalobre-Lorente, Daniel, 2020. "Tourism and inequality in per capita water availability: is the linkage sustainable?," MPRA Paper 100093, University Library of Munich, Germany.
    16. Silvana Pacheco-Treviño & Mario G. Manzano-Camarillo, 2024. "The Socioeconomic Dimensions of Water Scarcity in Urban and Rural Mexico: A Comprehensive Assessment of Sustainable Development," Sustainability, MDPI, vol. 16(3), pages 1-20, January.
    17. Xuebing Yao & Xu Tang & Arash Farnoosh & Cuiyang Feng, 2021. "Quantifying virtual water scarcity risk transfers of energy system in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 945-969, October.
    18. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Xuebing Yao & Xu Tang & Arash Farnoosh & Cuiyang Feng, 2021. "Quantifying virtual water scarcity risk transfers of energy system in China," Working Papers hal-03206609, HAL.
    20. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    21. Ria Ranjan Srivastava & Prabhat Kumar Singh, 2023. "Selection of factors affecting integrated municipal wastewater treatment and reuse network: an interpretive structural modelling (ISM) approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9137-9161, September.
    22. Sandra Ricart & Rubén A. Villar-Navascués & Maria Hernández-Hernández & Antonio M. Rico-Amorós & Jorge Olcina-Cantos & Enrique Moltó-Mantero, 2021. "Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review," Sustainability, MDPI, vol. 13(5), pages 1-31, February.
    23. Muhammad Amin & Hamdani Umar & Fazri Amir & Suma Fachruri Ginting & Putu Brahmanda Sudarsana & Wayan Nata Septiadi, 2022. "Experimental Study of a Tubular Solar Distillation System with Heat Exchanger Using a Parabolic Trough Collector," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    24. Yuanjie Li & Zhuoying Zhang & Minjun Shi, 2019. "Restrictive Effects of Water Scarcity on Urban Economic Development in the Beijing-Tianjin-Hebei City Region," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    25. Yin, Yali & Luan, Xiaobo & Sun, Shikun & Wang, Yubao & Wu, Pute & Wang, Xinyu, 2021. "Environmental impact of grain virtual water flows in China: From 1997 to 2014," Agricultural Water Management, Elsevier, vol. 256(C).
    26. Suter, Manuel & Strahm, Noel & Bundeli, Till & Kaessner, Kaja & Cologna, Viktoria & Berger, Sebastian, 2024. "Framing effects in expert assessments of optimal GDP development," Ecological Economics, Elsevier, vol. 223(C).
    27. Lei Liu & Tong Wu & Zhihang Xu & Xiaofeng Pan, 2018. "The Water-Economy Nexus and Sustainable Transition of the Pearl River Delta, China (1999–2015)," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    28. Sarami Foroushani, Taraneh & Balali, Hamid & Movahedi, Reza & Partelow, Stefan, 2024. "Using local knowledge to assess the sustainability of groundwater resources: applying the social-ecological systems framework to the Hamedan-Bahar Plain, Iran," EconStor Preprints 289209, ZBW - Leibniz Information Centre for Economics.
    29. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    30. Casey Keat-Chuan Ng & Peter Aun-Chuan Ooi & Wey-Lim Wong & Gideon Khoo, 2021. "The geomorphology and ecosystem service economic value baselines of tributary watersheds in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14472-14493, October.
    31. Edward B. Barbier & Joanne C. Burgess, 2024. "Economics of Water Scarcity and Efficiency," Sustainability, MDPI, vol. 16(19), pages 1-14, October.
    32. Rehkamp, Sarah & Canning, Patrick, 2018. "Measuring Embodied Blue Water in American Diets: An EIO Supply Chain Approach," Ecological Economics, Elsevier, vol. 147(C), pages 179-188.
    33. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    34. Ángela Valle-García & Carlos Gutiérrez-Martín & Nazaret M. Montilla-López, 2024. "Water Pricing and Quotas: A Quantitative Analysis from a Private and Social Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4287-4306, September.
    35. Philip Kofi Adom & Joonho Yeo & Lin Zhang, 2021. "Is water use sustainable and efficient in China? Evidence from a macro level analysis," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6166-6183, November.
    36. Abdul Rehman & Hengyun Ma & Ilhan Ozturk & Muntasir Murshed & Vishal Dagar, 2021. "The dynamic impacts of CO2 emissions from different sources on Pakistan’s economic progress: a roadmap to sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17857-17880, December.
    37. Ortuzar, Iban & Serrano, Ana & Xabadia, Àngels, 2023. "Macroeconomic impacts of water allocation under droughts. Accounting for global supply chains in a multiregional context," Ecological Economics, Elsevier, vol. 211(C).

  10. Ray Pritchard & Scott Kelly, 2017. "Realising Operational Energy Performance in Non-Domestic Buildings: Lessons Learnt from Initiatives Applied in Cambridge," Sustainability, MDPI, vol. 9(8), pages 1-21, August.

    Cited by:

    1. Panagiotis Patlakas & Georgios Koronaios & Rokia Raslan & Gareth Neighbour & Hasim Altan, 2017. "Case Studies of Environmental Visualization," Energies, MDPI, vol. 10(10), pages 1-18, September.
    2. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    4. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    5. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.

  11. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.

    Cited by:

    1. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    2. Hughes, Caroline & Natarajan, Sukumar & Liu, Chunde & Chung, Woong June & Herrera, Manuel, 2019. "Winter thermal comfort and health in the elderly," Energy Policy, Elsevier, vol. 134(C).
    3. Jonida Murataj & Rajat Gupta & Fergus Nicol, 2022. "Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors," Energies, MDPI, vol. 15(10), pages 1-23, May.
    4. Xiu’e Yang & Wenjie Ji & Chunhui Wang & Haidong Wu, 2023. "Investigation of Indoor Thermal Environment and Heat-Using Behavior for Heat-Metering Households in Northern China," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    5. Lomas, K.J. & Oliveira, S. & Warren, P. & Haines, V.J. & Chatterton, T. & Beizaee, A. & Prestwood, E. & Gething, B., 2018. "Do domestic heating controls save energy? A review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 52-75.
    6. Dodds, Paul E., 2014. "Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments," Applied Energy, Elsevier, vol. 132(C), pages 358-369.
    7. McKenna, R. & Hofmann, L. & Merkel, E. & Fichtner, W. & Strachan, N., 2016. "Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake," Energy Policy, Elsevier, vol. 97(C), pages 13-26.
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    10. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2019. "The role of environmental values, socio-demographics and building characteristics in setting room temperatures in winter," Energy, Elsevier, vol. 171(C), pages 1183-1192.
    11. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    12. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    13. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    14. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    15. Karol Bandurski & Andrzej Górka & Halina Koczyk, 2023. "Radiators Adjustment in Multi-Family Residential Buildings—An Analysis Based on Data from Heat Meters," Energies, MDPI, vol. 16(22), pages 1-22, November.
    16. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    17. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    18. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    19. Yohan Kim & Scott Kelly & Deepu Krishnan & Jay Falletta & Kerryn Wilmot, 2022. "Strategies for Imputation of High-Resolution Environmental Data in Clinical Randomized Controlled Trials," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    20. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    21. José Joaquín Aguilera & Rune Korsholm Andersen & Jørn Toftum, 2019. "Prediction of Indoor Air Temperature Using Weather Data and Simple Building Descriptors," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
    22. Huang, Luling & Nock, Destenie, 2024. "Estimating the income-related inequality aversion to energy limiting behavior in the United States," Energy Economics, Elsevier, vol. 136(C).
    23. Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
    24. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.

  12. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.

    Cited by:

    1. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    2. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
    3. Jenny Crawley & Phillip Biddulph & Paul J. Northrop & Jez Wingfield & Tadj Oreszczyn & Cliff Elwell, 2019. "Quantifying the Measurement Error on England and Wales EPC Ratings," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    5. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    6. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    7. Urquizo, Javier & Calderón, Carlos & James, Philip, 2018. "Modelling household spatial energy intensity consumption patterns for building envelopes, heating systems and temperature controls in cities," Applied Energy, Elsevier, vol. 226(C), pages 670-681.
    8. Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
    9. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Seon Park, Hyo, 2014. "Development of a new energy efficiency rating system for existing residential buildings," Energy Policy, Elsevier, vol. 68(C), pages 218-231.
    10. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    11. Neil Burford & Rod Jones & Stephen Reynolds & David Rodley, 2016. "Macro Micro Studio: A Prototype Energy Autonomous Laboratory," Sustainability, MDPI, vol. 8(6), pages 1-25, May.
    12. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
    13. Ray Pritchard & Scott Kelly, 2017. "Realising Operational Energy Performance in Non-Domestic Buildings: Lessons Learnt from Initiatives Applied in Cambridge," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    14. Joowook Kim & Jemin Myoung & Hyunwoo Lim & Doosam Song, 2020. "Efficiency Gap Caused by the Input Data in Evaluating Energy Efficiency of Low-Income Households’ Energy Retrofit Program," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    15. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    16. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    18. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    19. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    20. Comerford, David A. & Lange, Ian & Moro, Mirko, 2018. "Proof of concept that requiring energy labels for dwellings can induce retrofitting," Energy Economics, Elsevier, vol. 69(C), pages 204-212.
    21. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    22. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    23. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.

  13. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.

    Cited by:

    1. Jakučionytė-Skodienė, Miglė & Liobikienė, Genovaitė, 2023. "Changes in energy consumption and CO2 emissions in the Lithuanian household sector caused by environmental awareness and climate change policy," Energy Policy, Elsevier, vol. 180(C).
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    4. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    6. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    7. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    8. Marin, Giovanni & Palma, Alessandro, 2016. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Energy: Resources and Markets 230687, Fondazione Eni Enrico Mattei (FEEM).
    9. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    10. Stutterecker, Werner & Blümel, Ernst, 2012. "Energy plus standard in buildings constructed by housing associations?," Energy, Elsevier, vol. 48(1), pages 56-65.
    11. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    12. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    13. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    14. Comodi, Gabriele & Cioccolanti, Luca & Renzi, Massimiliano, 2014. "Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency," Energy, Elsevier, vol. 68(C), pages 92-103.
    15. Taylor, Nicholas W. & Jones, Pierce H. & Kipp, M. Jennison, 2014. "Targeting utility customers to improve energy savings from conservation and efficiency programs," Applied Energy, Elsevier, vol. 115(C), pages 25-36.
    16. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    17. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    18. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    19. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
    20. Kelly, S. & Pollitt, M. & Crawford-Brown, D., 2012. "Building performance evaluation and certification in the UK: a critical review of SAP?," Cambridge Working Papers in Economics 1238, Faculty of Economics, University of Cambridge.
    21. Rosenberg, Eva, 2014. "Calculation method for electricity end-use for residential lighting," Energy, Elsevier, vol. 66(C), pages 295-304.
    22. Dineen, D. & Rogan, F. & Ó Gallachóir, B.P., 2015. "Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source," Energy, Elsevier, vol. 90(P1), pages 759-767.
    23. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    24. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    25. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    26. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    27. Zhang, Tao & Siebers, Peer-Olaf & Aickelin, Uwe, 2012. "A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK," Energy Policy, Elsevier, vol. 47(C), pages 102-110.
    28. Xia Wang & Jiachen Yuan & Kairui You & Xianrui Ma & Zhaoji Li, 2023. "Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    29. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    30. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    31. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    32. Huebner, Gesche M. & Shipworth, David, 2017. "All about size? – The potential of downsizing in reducing energy demand," Applied Energy, Elsevier, vol. 186(P2), pages 226-233.
    33. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    34. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    35. Zheng, Jiajia & Dang, Yongjie & Assad, Ullah, 2024. "Household energy consumption, energy efficiency, and household income–Evidence from China," Applied Energy, Elsevier, vol. 353(PA).
    36. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    37. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    38. Никола Гущеров, 2018. "Моделиране На Потребителското Поведение На Пазара На Електроенергия," Economics 21, D. A. Tsenov Academy of Economics, Svishtov, Bulgaria, issue 1 Year 20, pages 25-43.
    39. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    40. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    41. Wang, Xia & Ding, Chao & Cai, Weiguang & Luo, Lizi & Chen, Mingman, 2021. "Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach," Energy, Elsevier, vol. 237(C).
    42. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    43. Guo, Ji & Xu, Yuanjing & Qu, Yao & Wang, Yiting & Wu, Xianhua, 2023. "Exploring factors affecting household energy consumption in the internet era: Empirical evidence from Chinese households," Energy Policy, Elsevier, vol. 183(C).
    44. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    45. Annette Steingrube & Keyu Bao & Stefan Wieland & Andrés Lalama & Pithon M. Kabiro & Volker Coors & Bastian Schröter, 2021. "A Method for Optimizing and Spatially Distributing Heating Systems by Coupling an Urban Energy Simulation Platform and an Energy System Model," Resources, MDPI, vol. 10(5), pages 1-19, May.
    46. Estiri, Hossein, 2014. "Energy Planning in the Big Data Era: A Theme Study of the Residential Sector," EconStor Conference Papers 106936, ZBW - Leibniz Information Centre for Economics.
    47. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    48. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    49. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    50. Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
    51. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    52. Neves, Catarina & Oliveira, Tiago, 2021. "Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries," Applied Energy, Elsevier, vol. 298(C).
    53. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    54. Circella, Giovanni & Johnston, Robert & Holguin, Andrew & Lehmer, Eric & Wang, Yang & McCoy, Michael, 2013. "Updating the PECAS Modeling Framework to Include Energy Use Data for Buildings," Institute of Transportation Studies, Working Paper Series qt8jr035gh, Institute of Transportation Studies, UC Davis.
    55. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.

  14. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.

    Cited by:

    1. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
    2. Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
    3. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    4. Gabillet, Pauline, 2015. "Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district," Energy Policy, Elsevier, vol. 78(C), pages 189-197.
    5. Hannon, Matthew J. & Bolton, Ronan, 2015. "UK Local Authority engagement with the Energy Service Company (ESCo) model: Key characteristics, benefits, limitations and considerations," Energy Policy, Elsevier, vol. 78(C), pages 198-212.
    6. Ambrose, Aimee & Eadson, Will & Pinder, James, 2016. "The role of actor-networks in the early stage mobilisation of low carbon heat networks," Energy Policy, Elsevier, vol. 96(C), pages 144-152.
    7. Ronan Bolton & Timothy J Foxon, 2013. "Urban Infrastructure Dynamics: Market Regulation and the Shaping of District Energy in UK Cities," Environment and Planning A, , vol. 45(9), pages 2194-2211, September.
    8. Rees, M.T. & Wu, J. & Jenkins, N. & Abeysekera, M., 2014. "Carbon constrained design of energy infrastructure for new build schemes," Applied Energy, Elsevier, vol. 113(C), pages 1220-1234.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    10. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    11. Kelly, S. & Pollitt, M. & Crawford-Brown, D., 2012. "Building performance evaluation and certification in the UK: a critical review of SAP?," Cambridge Working Papers in Economics 1238, Faculty of Economics, University of Cambridge.
    12. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    13. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    14. Luciano Barcellos-Paula & Anna María Gil-Lafuente & Aline Castro-Rezende, 2023. "Algorithm Applied to SDG13: A Case Study of Ibero-American Countries," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    15. Davide Borelli & Francesco Devia & Margherita Marré Brunenghi & Corrado Schenone & Alessandro Spoladore, 2015. "Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    16. Melchiorre Casisi & Stefano Costanzo & Piero Pinamonti & Mauro Reini, 2018. "Two-Level Evolutionary Multi-objective Optimization of a District Heating System with Distributed Cogeneration," Energies, MDPI, vol. 12(1), pages 1-23, December.
    17. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
    18. Richard S J Tol, 2018. "Policy Brief—Leaving an Emissions Trading Scheme: Implications for the United Kingdom and the European Union," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 183-189.
    19. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    20. Athawale, Rasika & Felder, Frank A., 2014. "Incentives for Combined Heat and Power plants: How to increase societal benefits?," Utilities Policy, Elsevier, vol. 31(C), pages 121-132.
    21. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    22. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    23. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    24. Riesz, Jenny & Vithayasrichareon, Peerapat & MacGill, Iain, 2015. "Assessing “gas transition” pathways to low carbon electricity – An Australian case study," Applied Energy, Elsevier, vol. 154(C), pages 794-804.
    25. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
    26. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    27. Chulseung Lee & Jaechan Park & Kangmun Lee & Ji Yeon Yang & Taewoo Roh, 2019. "Energy Efficiency for Supplier and Sustainability for Demand: A Case of Heating Systems in South Korea," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    28. Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
    29. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    30. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.