IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p759-767.html
   My bibliography  Save this article

Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source

Author

Listed:
  • Dineen, D.
  • Rogan, F.
  • Ó Gallachóir, B.P.

Abstract

This paper presents a novel bottom up approach to modelling the energy savings potential of energy efficiency improvement measures to be applied through retrofit of the existing dwelling stock. It takes advantage of a newly available, rich dataset on the construction characteristics of the 2011 housing stock in Ireland. The methodological innovation centres on the use of wall construction type in the modelling and analysis. While Ireland is the focus, this approach is applicable to any EU member state for which data on dwelling characteristics exists from surveys carried as part of Energy Performance Certificate calculations. The model is calibrated to the national energy balance for 2011 by varying the internal temperature assumptions. Sensitivity analysis is performed on the effects of internal temperature and rebound. The paper also highlights some limitations posed by data availability on the accuracy and sophistication of models that can currently be developed, specifically in the Irish case.

Suggested Citation

  • Dineen, D. & Rogan, F. & Ó Gallachóir, B.P., 2015. "Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source," Energy, Elsevier, vol. 90(P1), pages 759-767.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:759-767
    DOI: 10.1016/j.energy.2015.07.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215010002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Healy, John D. & Clinch, J. Peter, 2004. "Quantifying the severity of fuel poverty, its relationship with poor housing and reasons for non-investment in energy-saving measures in Ireland," Energy Policy, Elsevier, vol. 32(2), pages 207-220, January.
    3. Ahern, Ciara & Griffiths, Philip & O'Flaherty, Micheál, 2013. "State of the Irish housing stock—Modelling the heat losses of Ireland's existing detached rural housing stock & estimating the benefit of thermal retrofit measures on this stock," Energy Policy, Elsevier, vol. 55(C), pages 139-151.
    4. Hyland, Marie & Lyons, Ronan C. & Lyons, Seán, 2013. "The value of domestic building energy efficiency — evidence from Ireland," Energy Economics, Elsevier, vol. 40(C), pages 943-952.
    5. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Clinch, J. Peter & Healy, John D., 2000. "Domestic energy efficiency in Ireland: correcting market failure," Energy Policy, Elsevier, vol. 28(1), pages 1-8, January.
    7. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    8. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    9. Hamilton, Ian G. & Steadman, Philip J. & Bruhns, Harry & Summerfield, Alex J. & Lowe, Robert, 2013. "Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database," Energy Policy, Elsevier, vol. 60(C), pages 462-480.
    10. Mata, Érika & Sasic Kalagasidis, Angela & Johnsson, Filip, 2013. "Energy usage and technical potential for energy saving measures in the Swedish residential building stock," Energy Policy, Elsevier, vol. 55(C), pages 404-414.
    11. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    12. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    13. Hull, David & Ó Gallachóir, Brian P. & Walker, Neil, 2009. "Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience," Energy Policy, Elsevier, vol. 37(12), pages 5363-5375, December.
    14. Leahy, Eimear & Lyons, Seán & Walsh, Sharon, 2012. "Electrical Appliance Ownership and Usage in Ireland," Papers WP421, Economic and Social Research Institute (ESRI).
    15. Preval, Nick & Chapman, Ralph & Pierse, Nevil & Howden-Chapman, Philippa, 2010. "Evaluating energy, health and carbon co-benefits from improved domestic space heating: A randomised community trial," Energy Policy, Elsevier, vol. 38(8), pages 3965-3972, August.
    16. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    17. Clinch, J. Peter & Healy, John D., 2003. "Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model," Energy Economics, Elsevier, vol. 25(5), pages 565-583, September.
    18. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    19. Healy, John D. & Clinch, J. Peter, 2002. "Fuel poverty, thermal comfort and occupancy: results of a national household-survey in Ireland," Applied Energy, Elsevier, vol. 73(3-4), pages 329-343, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    2. Balaras, Constantinos A. & Dascalaki, Elena G. & Droutsa, Kalliopi G. & Kontoyiannidis, Simon, 2016. "Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings," Applied Energy, Elsevier, vol. 164(C), pages 115-132.
    3. Jenkins, David & Simpson, Sophie & Peacock, Andrew, 2017. "Investigating the consistency and quality of EPC ratings and assessments," Energy, Elsevier, vol. 138(C), pages 480-489.
    4. Joanne Louise Patterson, 2016. "Evaluation of a Regional Retrofit Programme to Upgrade Existing Housing Stock to Reduce Carbon Emissions, Fuel Poverty and Support the Local Supply Chain," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    5. Marta Gangolells & Miquel Casals & Jaume Ferré-Bigorra & Núria Forcada & Marcel Macarulla & Kàtia Gaspar & Blanca Tejedor, 2019. "Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    6. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    7. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    8. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    9. Considine, Brian & Liu, Ying & McNabola, Aonghus, 2024. "Energy savings potential and life cycle costs of deep energy retrofits in buildings with and without habitable style loft attic conversions: A case study of Irelands residential sector," Energy Policy, Elsevier, vol. 185(C).
    10. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    12. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    13. Gnekpe, Christian & Tchuente, Dieudonné & Nyawa, Serge & Dey, Prasanta Kumar, 2024. "Energy Performance of Building Refurbishments: Predictive and Prescriptive AI-based Machine Learning Approaches," Journal of Business Research, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    2. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    4. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    5. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    6. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    7. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    8. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    9. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    10. Kelly, J. Andrew & Clinch, J. Peter & Kelleher, L. & Shahab, S., 2020. "Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures," Energy Policy, Elsevier, vol. 146(C).
    11. Comodi, Gabriele & Cioccolanti, Luca & Renzi, Massimiliano, 2014. "Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency," Energy, Elsevier, vol. 68(C), pages 92-103.
    12. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    13. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    14. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    15. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    17. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    18. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    19. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:759-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.