IDEAS home Printed from https://ideas.repec.org/p/idb/brikps/13093.html
   My bibliography  Save this paper

Water and Land Stress in Bolivia, Colombia, Ecuador, and Peru under Coupled Climate-Socioeconomic Scenarios

Author

Listed:
  • Feng, Kuishuang
  • Chen, Xiangjie

Abstract

How to keep water and land stress within planetary boundaries is a major challenge for sustainable development in Latin American countries. Using a global multi-regional input-output analysis (GMRIO) approach, this study simulates the future land and water demand for Peru, Bolivia, Ecuador, and Colombia under three climate-socioeconomic scenarios: SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5. Under all three scenarios, land and water demand in all four countries are projected to increase rapidly in the next few decades. By 2050, the demand for cropland in Peru and Bolivia will exceed their planetary boundaries and the rise in income will be the most significant contributor to the rising demand. In addition, foreign demand will significantly drive the growth of both water and land demand in Ecuador and land demand in Colombia. Non-agricultural sectors (e.g., the mining sector in the latter) will be primarily responsible for the increased water demand in Ecuador and Peru, exacerbating competition between those sectors and the agricultural sector for water. In Peru and Bolivia, there is a significant spatial mismatch of water and land resources at the basin level. With hydraulic infrastructure as a prerequisite, developing irrigated agriculture may lead to a water-land trade-off that will significantly alleviate the land stress in Peru and Bolivia.

Suggested Citation

  • Feng, Kuishuang & Chen, Xiangjie, 2023. "Water and Land Stress in Bolivia, Colombia, Ecuador, and Peru under Coupled Climate-Socioeconomic Scenarios," IDB Publications (Working Papers) 13093, Inter-American Development Bank.
  • Handle: RePEc:idb:brikps:13093
    DOI: http://dx.doi.org/10.18235/0005144
    as

    Download full text from publisher

    File URL: https://publications.iadb.org/publications/english/document/Water-and-Land-Stress-in-Bolivia-Colombia-Ecuador-and-Peru-under-Coupled-Climate-Socioeconomic-Scenarios.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.18235/0005144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
    2. Angel Aguiar & Maksym Chepeliev & Erwin Corong & Dominique van der Mensbrugghe, 2022. "The Global Trade Analysis Project (GTAP) Data Base: Version 11," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 7(2), pages 1-37, December.
    3. Zhang, Bangbang & Feng, Gary & Kong, Xiangbin & Lal, Rattan & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region," Agricultural Water Management, Elsevier, vol. 177(C), pages 440-453.
    4. Bjelle, Eivind Lekve & Wiebe, Kirsten S. & Többen, Johannes & Tisserant, Alexandre & Ivanova, Diana & Vita, Gibran & Wood, Richard, 2021. "Future changes in consumption: The income effect on greenhouse gas emissions," Energy Economics, Elsevier, vol. 95(C).
    5. Distefano, Tiziano & Kelly, Scott, 2017. "Are we in deep water? Water scarcity and its limits to economic growth," Ecological Economics, Elsevier, vol. 142(C), pages 130-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    3. Islam, Asif & Hyland, Marie, 2019. "The drivers and impacts of water infrastructure reliability – a global analysis of manufacturing firms," Ecological Economics, Elsevier, vol. 163(C), pages 143-157.
    4. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    5. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    6. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    7. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    8. Timothé Beaufils & Joschka Wanner & Leonie Wenz, 2024. "The Potential of Carbon Border Adjustments to Foster Climate Cooperation," CESifo Working Paper Series 11429, CESifo.
    9. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    10. Maros Ivanic & Jayson Beckman & Noe Nava, 2023. "Estimation of the Value-Added/Intermediate Input Substitution Elasticities Consistent with the GTAP Data," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 8(2), pages 134-158, December.
    11. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    12. Semet, Raphaël, 2024. "Coordinating social equity and emissions: Challenges in carbon tax policy," Energy Policy, Elsevier, vol. 185(C).
    13. Philip Kofi Adom & Joonho Yeo & Lin Zhang, 2021. "Is water use sustainable and efficient in China? Evidence from a macro level analysis," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6166-6183, November.
    14. Distefano, Tiziano & Chiarotti, Guido & Laio, Francesco & Ridolfi, Luca, 2019. "Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness," Ecological Economics, Elsevier, vol. 159(C), pages 122-132.
    15. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    16. Mahlkow, Hendrik & Wanner, Joschka, 2023. "The carbon footprint of global trade imbalances," W.E.P. - Würzburg Economic Papers 108, University of Würzburg, Department of Economics.
    17. Jacksohn, Anke & Tovar Reaños, Miguel Angel & Pothen, Frank & Rehdanz, Katrin, 2023. "Trends in household demand and greenhouse gas footprints in Germany: Evidence from microdata of the last 20 years," Ecological Economics, Elsevier, vol. 208(C).
    18. Na Qiao & Lan Fang & Lan Mu, 2020. "Evaluating the impacts of water resources technology progress on development and economic growth over the Northwest, China," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    19. Huilin Li & Zuomin Wen, 2023. "A Market-Based Payment Study for Forest Water Purification Service in Loess Plateau of Yellow River Basin, China," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    20. Mahlkow, Hendrik & Wanner, Joschka, 2023. "The carbon footprint of global trade imbalances," Kiel Working Papers 2260, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    Water and sanitation; Water use; Land stress; Agriculture and Food Security; climate change; Productive Transformation; Andean countries; Andean Region;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:idb:brikps:13093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Felipe Herrera Library (email available below). General contact details of provider: https://edirc.repec.org/data/iadbbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.