IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031985.html
   My bibliography  Save this article

Enhancing accuracy of flexibility characterization in integrated energy system design: A variable temporal resolution optimization method

Author

Listed:
  • Qin, Yuxiao
  • Liu, Pei
  • Li, Zheng

Abstract

Integrated energy systems offer substantial potential for enhancing renewable energy integration. However, due to the distinct dynamic characteristics between system components, the characterization of system flexibility in integrated energy systems remains a challenge. This further complicates their optimal design, as underestimation or overestimation of flexibility during design can result in unexpected operational performance degradation. This article aims to improve the accuracy of system flexibility characterization in the optimal design of an integrated energy system, and address the conflict between high-precision modeling requirements and the difficulty of solving high-dimensional optimization problems. Specifically, higher temporal resolution operational constraints are adopted to characterize system flexibility, and a variable temporal resolution optimization method is developed, which could effectively reduce computational burden whilst maintaining accuracy. Optimization results demonstrate a significant reduction in solving time, approximately 98.5 %, compared to directly shortening the time step. Moreover, the proposed method ensures optimal results with a reliable system configuration, preventing load loss during operation. Additionally, it significantly reduces total ramping amount and adjustment times of coal-fired units by over 56.0 % and 32.3 % respectively, while achieving a 0.9 % reduction in carbon emissions. Despite these benefits, the total annual costs of the system only experience a minimal increase of 0.6 %.

Suggested Citation

  • Qin, Yuxiao & Liu, Pei & Li, Zheng, 2024. "Enhancing accuracy of flexibility characterization in integrated energy system design: A variable temporal resolution optimization method," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031985
    DOI: 10.1016/j.energy.2023.129804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    5. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    6. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    7. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    8. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    9. Deane, J.P. & Drayton, G. & Ó Gallachóir, B.P., 2014. "The impact of sub-hourly modelling in power systems with significant levels of renewable generation," Applied Energy, Elsevier, vol. 113(C), pages 152-158.
    10. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    11. Hentschel, Julia & Zindler, Henning & Spliethoff, Hartmut, 2017. "Modelling and transient simulation of a supercritical coal-fired power plant: Dynamic response to extended secondary control power output," Energy, Elsevier, vol. 137(C), pages 927-940.
    12. Georgilakis, Pavlos S. & Katsigiannis, Yiannis A., 2009. "Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources," Renewable Energy, Elsevier, vol. 34(1), pages 65-70.
    13. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    14. EL-Shimy, M., 2010. "Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt," Renewable Energy, Elsevier, vol. 35(8), pages 1870-1878.
    15. Growitsch Christian & Malischek Raimund & Nick Sebastian & Wetzel Heike, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, De Gruyter, vol. 16(3), pages 307-323, August.
    16. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    17. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tao & Li, Guojun & Wei, Linyang & Ji, Wenchao & Qiu, Yong & Zhang, Qinrui, 2024. "A novel dynamic simulation strategy for regional integrated energy system considering coupling components failure," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    3. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    4. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Fu, D.Z. & Zheng, Z.Y. & Shi, H.B. & Xiao, Rui & Huang, G.H. & Li, Y.P., 2017. "A multi-fuel management model for a community-level district heating system under multiple uncertainties," Energy, Elsevier, vol. 128(C), pages 337-356.
    6. Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).
    7. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    8. Chen, Binbin & Wu, Wenchuan & Guo, Qinglai & Sun, Hongbin, 2022. "An efficient optimal energy flow model for integrated energy systems based on energy circuit modeling in the frequency domain," Applied Energy, Elsevier, vol. 326(C).
    9. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    10. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).
    11. Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
    12. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    13. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    14. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    15. Zhang, Menghan & Yang, Zhifang & Lin, Wei & Yu, Juan & Dai, Wei & Du, Ershun, 2021. "Enhancing economics of power systems through fast unit commitment with high time resolution," Applied Energy, Elsevier, vol. 281(C).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    18. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    20. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.