IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314616.html
   My bibliography  Save this article

Estimating residential building energy consumption using overhead imagery

Author

Listed:
  • Streltsov, Artem
  • Malof, Jordan M.
  • Huang, Bohao
  • Bradbury, Kyle

Abstract

Residential buildings account for a large proportion of global energy consumption in both low- and high- income countries. Efficient planning to meet building energy needs while increasing operational, economic, and environmental efficiency requires accurate, high spatial resolution information on energy consumption. Such information is difficult to acquire and most models for estimating residential building energy consumption require detailed knowledge of individual homes and communities which are unlikely to be available at a large scale.

Suggested Citation

  • Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314616
    DOI: 10.1016/j.apenergy.2020.116018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    4. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    5. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    6. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    7. Stéphane Hallegatte & Jun Rentschler & Brian Walsh, 2018. "Building Back Better," World Bank Publications - Reports 29867, The World Bank Group.
    8. Fikru, Mahelet G. & Gautier, Luis, 2015. "The impact of weather variation on energy consumption in residential houses," Applied Energy, Elsevier, vol. 144(C), pages 19-30.
    9. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    10. ., 2018. "Reform 1979–1989: building market institutions," Chapters, in: The Institutional Evolution of China, chapter 3, pages 44-103, Edward Elgar Publishing.
    11. Jihoon Min & Zeke Hausfather & Qi Feng Lin, 2010. "A High‐Resolution Statistical Model of Residential Energy End Use Characteristics for the United States," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 791-807, October.
    12. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    13. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    14. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    15. Haas, Reinhard & Biermayr, Peter & Zoechling, Josef & Auer, Hans, 1998. "Impacts on electricity consumption of household appliances in Austria: a comparison of time series and cross-section analyses," Energy Policy, Elsevier, vol. 26(13), pages 1031-1040, November.
    16. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    2. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Meiyan Wang & Ying Xu & Runtian Shen & Yun Wu, 2024. "Performance-Oriented Parametric Optimization Design for Energy Efficiency of Rural Residential Buildings: A Case Study from China’s Hot Summer and Cold Winter Zone," Sustainability, MDPI, vol. 16(19), pages 1-30, September.
    6. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    7. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    8. Purna Prakash Kasaraneni & Venkata Pavan Kumar Yellapragada & Ganesh Lakshmana Kumar Moganti & Aymen Flah, 2022. "Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    9. Zhang, Chengyu & Luo, Zhiwen & Rezgui, Yacine & Zhao, Tianyi, 2024. "Enhancing building energy consumption prediction introducing novel occupant behavior models with sparrow search optimization and attention mechanisms: A case study for forty-five buildings in a univer," Energy, Elsevier, vol. 294(C).
    10. Mohamed H. Elnabawi & Esmail Saber & Lindita Bande, 2024. "Passive Building Energy Saving: Building Envelope Retrofitting Measures to Reduce Cooling Requirements for a Residential Building in an Arid Climate," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    11. Qicong Cai & Baizhan Li & Wenbo He & Miao Guo, 2024. "Energy Consumption Calculation of Civil Buildings in Regional Integrated Energy Systems: A Review of Characteristics, Methods and Application Prospects," Sustainability, MDPI, vol. 16(13), pages 1-25, July.
    12. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    13. Edun, Ayobami S. & Perry, Kirsten & Harley, Joel B. & Deline, Chris, 2021. "Unsupervised azimuth estimation of solar arrays in low-resolution satellite imagery through semantic segmentation and Hough transform," Applied Energy, Elsevier, vol. 298(C).
    14. Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).
    15. Mayer, Kevin & Haas, Lukas & Huang, Tianyuan & Bernabé-Moreno, Juan & Rajagopal, Ram & Fischer, Martin, 2023. "Estimating building energy efficiency from street view imagery, aerial imagery, and land surface temperature data," Applied Energy, Elsevier, vol. 333(C).
    16. Huang, Maoquan & Tang, G.H. & Si, Qiaoling & Pu, Jin Huan & Sun, Qie & Du, Mu, 2023. "Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes," Renewable Energy, Elsevier, vol. 216(C).
    17. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    18. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    2. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    3. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    4. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    5. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    6. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    8. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    9. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    10. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    11. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    12. Wallis, Hannah & Nachreiner, Malte & Matthies, Ellen, 2016. "Adolescents and electricity consumption; Investigating sociodemographic, economic, and behavioural influences on electricity consumption in households," Energy Policy, Elsevier, vol. 94(C), pages 224-234.
    13. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    14. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    15. Rosenberg, Eva, 2014. "Calculation method for electricity end-use for residential lighting," Energy, Elsevier, vol. 66(C), pages 295-304.
    16. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    17. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
    18. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    19. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    20. Estiri, Hossein, 2014. "Energy Planning in the Big Data Era: A Theme Study of the Residential Sector," EconStor Conference Papers 106936, ZBW - Leibniz Information Centre for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.