IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i9p5610-5620.html
   My bibliography  Save this article

Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector

Author

Listed:
  • Kelly, Scott

Abstract

Energy consumption from the residential sector is a complex socio-technical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM) is introduced to calculate the magnitude and significance of explanatory variables on residential energy consumption. The benefit of this approach is that it explains the complex relationships that exist between manifest variables and their overall effect though direct, indirect and total effects. Using the English House Condition Survey (EHCS) consisting of 2531 unique cases, the main drivers behind residential energy consumption are found to be the number of household occupants, floor area, household income, dwelling efficiency (SAP), household heating patterns and living room temperature. In the multivariate case, SAP explains very little of the variance of residential energy consumption. However, this procedure fails to account for simultaneity bias between energy consumption and SAP. Using SEM its shown that dwelling energy efficiency (SAP), has reciprocal causality with dwelling energy consumption and the magnitude of these two effects are calculable. When non-recursivity between SAP and energy consumption is allowed for, SAP is shown to have a negative effect on energy consumption but conversely, homes with a propensity to consume more energy also have higher SAP rates.

Suggested Citation

  • Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5610-5620
    DOI: 10.1016/j.energy.2011.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    3. Micklewright, John, 1989. "Towards a household model of UK domestic energy demand," Energy Policy, Elsevier, vol. 17(3), pages 264-276, June.
    4. Fouquet, Roger, 1995. "The impact of VAT introduction on UK residential energy demand : An investigation using the cointegration approach," Energy Economics, Elsevier, vol. 17(3), pages 237-247, July.
    5. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    6. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    7. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    8. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    9. Douthitt, Robin A., 1989. "An economic analysis of the demand for residential space heating fuel in Canada," Energy, Elsevier, vol. 14(4), pages 187-197.
    10. Baker, Keith J. & Rylatt, R. Mark, 2008. "Improving the prediction of UK domestic energy-demand using annual consumption-data," Applied Energy, Elsevier, vol. 85(6), pages 475-482, June.
    11. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    12. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    14. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    15. Simon Dresner & Paul Ekins, 2006. "Economic instruments to improve UK home energy efficiency without negative social impacts," Fiscal Studies, Institute for Fiscal Studies, vol. 27(1), pages 47-74, March.
    16. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    17. Boonekamp, Piet G.M., 2007. "Price elasticities, policy measures and actual developments in household energy consumption - A bottom up analysis for the Netherlands," Energy Economics, Elsevier, vol. 29(2), pages 133-157, March.
    18. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    19. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    20. Shorrock, LD & Dunster, JE, 1997. "The physically-based model BREHOMES and its use in deriving scenarios for the energy use and carbon dioxide emissions of the UK housing stock," Energy Policy, Elsevier, vol. 25(12), pages 1027-1037, October.
    21. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    3. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    4. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    5. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    7. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    8. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    9. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    10. Kialashaki, Arash & Reisel, John R., 2014. "Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States," Energy, Elsevier, vol. 76(C), pages 749-760.
    11. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    12. Zhang, Tao & Siebers, Peer-Olaf & Aickelin, Uwe, 2012. "A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK," Energy Policy, Elsevier, vol. 47(C), pages 102-110.
    13. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    14. Turki Alajmi & Patrick Phelan, 2020. "Modeling and Forecasting End-Use Energy Consumption for Residential Buildings in Kuwait Using a Bottom-Up Approach," Energies, MDPI, vol. 13(8), pages 1-19, April.
    15. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    16. Ziolkowska, Jadwiga R. & Ziolkowski, Bozydar, 2011. "Product generational dematerialization indicator: A case of crude oil in the global economy," Energy, Elsevier, vol. 36(10), pages 5925-5934.
    17. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    18. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    19. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    20. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5610-5620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.