IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp153-163.html
   My bibliography  Save this article

Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings

Author

Listed:
  • Burman, Esfand
  • Mumovic, Dejan
  • Kimpian, Judit

Abstract

Directive 2002/91/EC of the European Parliament and Council on the Energy Performance of Buildings has led to major developments in energy policies followed by the EU Member States. The national energy performance targets for the built environment are mostly rooted in the Building Regulations that are shaped by this Directive. Article 3 of this Directive requires a methodology to calculate energy performance of buildings under standardised operating conditions. Overwhelming evidence suggests that actual energy performance is often significantly higher than this standardised and theoretical performance. The risk is national energy saving targets may not be achieved in practice. The UK evidence for the education and office sectors is presented in this paper. A measurement and verification plan is proposed to compare actual energy performance of a building with its theoretical performance using calibrated thermal modelling. Consequently, the intended vs. actual energy performance can be established under identical operating conditions. This can help identify the shortcomings of construction process and building procurement. Once energy performance gap is determined with reasonable accuracy and root causes identified, effective measures could be adopted to remedy or offset this gap.

Suggested Citation

  • Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:153-163
    DOI: 10.1016/j.energy.2014.05.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    3. Hirst, Eric & White, Dennis & Goeltz, Richard, 1985. "Indoor temperature changes in retrofit homes," Energy, Elsevier, vol. 10(7), pages 861-870.
    4. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    5. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    7. Desideri, Umberto & Arcioni, Livia & Leonardi, Daniela & Cesaretti, Luca & Perugini, Perla & Agabitini, Elena & Evangelisti, Nicola, 2013. "Design of a multipurpose “zero energy consumption” building according to European Directive 2010/31/EU: Architectural and technical plants solutions," Energy, Elsevier, vol. 58(C), pages 157-167.
    8. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    9. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    10. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.
    11. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    12. Ekins, Paul & Lees, Eoin, 2008. "The impact of EU policies on energy use in and the evolution of the UK built environment," Energy Policy, Elsevier, vol. 36(12), pages 4580-4583, December.
    13. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    2. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    3. Singh, Manoj Kumar & Mahapatra, Sadhan & Teller, Jacques, 2013. "An analysis on energy efficiency initiatives in the building stock of Liege, Belgium," Energy Policy, Elsevier, vol. 62(C), pages 729-741.
    4. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    5. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    6. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    8. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    9. Huebner, Gesche M. & Shipworth, David, 2017. "All about size? – The potential of downsizing in reducing energy demand," Applied Energy, Elsevier, vol. 186(P2), pages 226-233.
    10. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    11. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    12. Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
    13. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    14. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    15. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
    16. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    17. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    19. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    20. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:153-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.