Strategies for Imputation of High-Resolution Environmental Data in Clinical Randomized Controlled Trials
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
- Jeremy Mennis & Michael Mason & Donna L. Coffman & Kevin Henry, 2018. "Geographic Imputation of Missing Activity Space Data from Ecological Momentary Assessment (EMA) GPS Positions," IJERPH, MDPI, vol. 15(12), pages 1-15, December.
- Jiang, R. & Murthy, D.N.P., 2011. "A study of Weibull shape parameter: Properties and significance," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1619-1626.
- Robert J. Hill & Michael Scholz, 2018.
"Can Geospatial Data Improve House Price Indexes? A Hedonic Imputation Approach with Splines,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 64(4), pages 737-756, December.
- Robert Hill & Michael Scholz, 2016. "Can Geospatial Data Improve House Price Indexes? A Hedonic Imputation Approach with Splines," ERES eres2016_146, European Real Estate Society (ERES).
- Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maria Lucia Parrella & Giuseppina Albano & Cira Perna & Michele La Rocca, 2021. "Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets," Computational Statistics, Springer, vol. 36(4), pages 2917-2938, December.
- Julian Granna & Wolfgang Brunauer & Stefan Lang, 2022. "Proposing a global model to manage the bias-variance tradeoff in the context of hedonic house price models," Working Papers 2022-12, Faculty of Economics and Statistics, Universität Innsbruck.
- Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
- McKenna, R. & Hofmann, L. & Merkel, E. & Fichtner, W. & Strachan, N., 2016. "Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake," Energy Policy, Elsevier, vol. 97(C), pages 13-26.
- Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
- Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021.
"Higher frequency hedonic property price indices: a state-space approach,"
Empirical Economics, Springer, vol. 61(1), pages 417-441, July.
- Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2018. "Higher Frequency Hedonic Property Price Indices: A State Space Approach," Graz Economics Papers 2018-04, University of Graz, Department of Economics.
- Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
- Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
- Anthony Lepinteur & Sofie R. Waltl, 2020.
"Tracking Owners’ Sentiments: Subjective Home Values, Expectations and House Price Dynamics,"
Department of Economics Working Papers
wuwp299, Vienna University of Economics and Business, Department of Economics.
- Lepinteur, Anthony & Waltl, Sofie R., 2020. "Tracking Owners' Sentiments: Subjective Home Values, Expectations and House Price Dynamics," Department of Economics Working Paper Series 299, WU Vienna University of Economics and Business.
- Anthony Lepinteur & Sofie R. Waltl, 2021. "Tracking Owners’ Sentiments: Subjective Home Values, Expectations and House Price Dynamics," LISER Working Paper Series 2021-02, Luxembourg Institute of Socio-Economic Research (LISER).
- Robert S. Martin, 2025.
"Democratic Aggregation: Issues and Implications for Consumer Price Indexes,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 71(1), February.
- Robert S. Martin, 2022. "Democratic Aggregation: Issues and Implications for Consumer Price Indexes," Economic Working Papers 600, Bureau of Labor Statistics.
- Jiang, R., 2013. "A tradeoff BX life and its applications," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 1-6.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023.
"Micro-geographic property price and rent indices,"
Regional Science and Urban Economics, Elsevier, vol. 98(C).
- Gabriel M. Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-geographic property price and rent indices," CEP Discussion Papers dp1782, Centre for Economic Performance, LSE.
- Gabriel Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-Geographic Property Price and Rent Indices," CESifo Working Paper Series 9187, CESifo.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2021. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 113922, London School of Economics and Political Science, LSE Library.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 116649, London School of Economics and Political Science, LSE Library.
- Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
- R. H. Ilyasov & V. A. Plotnikov, 2022. "Oil Production and Carbon Emissions: Spline Analysis of Relationships," Administrative Consulting, Russian Presidential Academy of National Economy and Public Administration. North-West Institute of Management., issue 5.
- E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
- Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
- Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
- Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
- Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
- Kiche J & Oscar Ngesa & George Orwa, 2019. "On Generalized Gamma Distribution and Its Application to Survival Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(5), pages 85-102, September.
More about this item
Keywords
imputation; randomized controlled trials; thermal comfort; spline-regression; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1307-:d:732482. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.