IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1149-d216870.html
   My bibliography  Save this article

Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings

Author

Listed:
  • Kyung Hwa Cho

    (Department of Architecture, Ajou University, Suwon 443-749, Korea)

  • Sun Sook Kim

    (Department of Architecture, Ajou University, Suwon 443-749, Korea)

Abstract

Existing buildings are likely to consume more energy and emit more greenhouse gases than new buildings because of inevitable deteriorations in physical performance. Accordingly, retrofitting of existing buildings is considered essential to reduce energy consumption and greenhouse gas emissions from the building sector. However, assessing the energy performance of existing buildings accurately has limitations because building materials undergo physical deterioration and the actual operational conditions differ from as-built documentation. There is also a difference in the level of data acquisition required for building energy performance assessment depending on the conditions of the building. The aim of this paper is to present types of methods for energy performance assessment of existing buildings considering this data acquisition level. We analyzed various assessment methods, which were classified into three prototypes of methods according to the required level of data acquisition. Type 1 assessed the target building based on literature sources. Type 2 conducted on-site audit and assessed the target building based on additional collected data. Type 3 assessed the target building by further estimating the building properties through analysis of the measured energy data. The applicability of the proposed methods were demonstrated using case studies of three buildings located in Seoul, South Korea.

Suggested Citation

  • Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1149-:d:216870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenkins, David & Simpson, Sophie & Peacock, Andrew, 2017. "Investigating the consistency and quality of EPC ratings and assessments," Energy, Elsevier, vol. 138(C), pages 480-489.
    2. Alberto Meiss & Miguel A. Padilla-Marcos & Jesús Feijó-Muñoz, 2017. "Methodology Applied to the Evaluation of Natural Ventilation in Residential Building Retrofits: A Case Study," Energies, MDPI, vol. 10(4), pages 1-19, April.
    3. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    4. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    5. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
    6. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    7. Ilaria Ballarini & Giovanna De Luca & Argun Paragamyan & Anna Pellegrino & Vincenzo Corrado, 2019. "Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance," Energies, MDPI, vol. 12(5), pages 1-18, March.
    8. Koomey, Jonathan G & Martin, Nathan C & Brown, Marilyn & Price, Lynn K & Levine, Mark D, 1998. "Costs of reducing carbon emissions: US building sector scenarios," Energy Policy, Elsevier, vol. 26(5), pages 433-440, April.
    9. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    11. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    12. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2011. "Energy and environmental benefits in public buildings as a result of retrofit actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 460-470, January.
    13. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    14. Chidiac, S.E. & Catania, E.J.C. & Morofsky, E. & Foo, S., 2011. "Effectiveness of single and multiple energy retrofit measures on the energy consumption of office buildings," Energy, Elsevier, vol. 36(8), pages 5037-5052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Mahmoodzadeh & Voytek Gretka & Stephen Wong & Thomas Froese & Phalguni Mukhopadhyaya, 2020. "Evaluating Patterns of Building Envelope Air Leakage with Infrared Thermography," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    3. Hye Gi Kim & Sun Sook Kim, 2020. "Development of Energy Benchmarks for Office Buildings Using the National Energy Consumption Database," Energies, MDPI, vol. 13(4), pages 1-18, February.
    4. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
    5. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    6. Miłosz Raczyński & Radosław Rutkowski, 2020. "How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 13(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    2. Chen, Yixing & Deng, Zhang & Hong, Tianzhen, 2020. "Automatic and rapid calibration of urban building energy models by learning from energy performance database," Applied Energy, Elsevier, vol. 277(C).
    3. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    4. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    5. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    6. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    7. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    8. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
    9. Jagarajan, Rehmaashini & Abdullah Mohd Asmoni, Mat Naim & Mohammed, Abdul Hakim & Jaafar, Mohd Nadzri & Lee Yim Mei, Janice & Baba, Maizan, 2017. "Green retrofitting – A review of current status, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1360-1368.
    10. Nagpal, Shreshth & Hanson, Jared & Reinhart, Christoph, 2019. "A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking," Applied Energy, Elsevier, vol. 241(C), pages 82-97.
    11. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Jenny Crawley & Phillip Biddulph & Paul J. Northrop & Jez Wingfield & Tadj Oreszczyn & Cliff Elwell, 2019. "Quantifying the Measurement Error on England and Wales EPC Ratings," Energies, MDPI, vol. 12(18), pages 1-19, September.
    13. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    14. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    15. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    16. Kalevi Piira & Julia Kantorovitch & Lotta Kannari & Jouko Piippo & Nam Vu Hoang, 2022. "Decision Support Tool to Enable Real-Time Data-Driven Building Energy Retrofitting Design," Energies, MDPI, vol. 15(15), pages 1-17, July.
    17. Chen, Yixing & Hong, Tianzhen, 2018. "Impacts of building geometry modeling methods on the simulation results of urban building energy models," Applied Energy, Elsevier, vol. 215(C), pages 717-735.
    18. Calama-González, Carmen María & Symonds, Phil & Petrou, Giorgos & Suárez, Rafael & León-Rodríguez, Ángel Luis, 2021. "Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring," Applied Energy, Elsevier, vol. 282(PA).
    19. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    20. Agata Ołtarzewska & Dorota Anna Krawczyk, 2022. "Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok," Energies, MDPI, vol. 15(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1149-:d:216870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.