IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922017378.html
   My bibliography  Save this article

Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates

Author

Listed:
  • Yin, Peng
  • Xie, Jingchao
  • Ji, Ying
  • Liu, Jiaping
  • Hou, Qixian
  • Zhao, Shanshan
  • Jing, Pengfei

Abstract

In northern China, district heating systems without terminal control typically serve thousands of end-users, thus inevitably some users suffer from insufficient warmth and others are overheated indoors due to hydraulic imbalances. This paper aimed to understand the indoor thermal conditions and the actual heating demand in low-quality centrally heated dwellings. The driving force of heating demand was analyzed based on a smartphone survey of 233 households in cold climates, and field measurements of winter indoor thermal environment and AC supplemental heating behavior were conducted in a sample of 13 cool dwellings. Logistic regression and heteroskedasticity-robust Ordinary Least Squares were adopted to assess AC usage patterns and driving forces of heating demand, respectively. New knowledge has been gathered regarding average temperatures of 17.4 ℃ and 16.8 °C in cool housing living rooms and bedrooms, respectively, outside the human thermal comfort zone. Simultaneously, intermittent and partial AC usage patterns induced by time and air temperature were observed in these cool end-users for the comfort. The average daily running time of AC devices was 2.0 h for the living room and 1.8 h for the bedroom. There were statistically significant base linking occupants' heating demands to education level, household income, tenure type, presence of children, thermal experience and heating system. However, it was not a significant factor for household size. In addition, a rebound effect of building energy efficiency improvements on the interior temperature was also noticed. The results of this study shed light on better and target-oriented residential internal temperature or heating system design for both thermal comfort requirements and energy-savings.

Suggested Citation

  • Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017378
    DOI: 10.1016/j.apenergy.2022.120480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Runming & Liu, Jing & Li, Baizhan, 2010. "Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms," Applied Energy, Elsevier, vol. 87(3), pages 1015-1022, March.
    2. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    3. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    4. Xu, Xiaoqi & Culligan, Patricia J. & Taylor, John E., 2014. "Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a building’s indoor thermal environment," Applied Energy, Elsevier, vol. 123(C), pages 209-219.
    5. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    6. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    7. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    9. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    10. Indraganti, Madhavi, 2010. "Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India," Applied Energy, Elsevier, vol. 87(3), pages 866-883, March.
    11. Liu, Chang & Zhu, Bei & Ni, Jinlan & Wei, Chu, 2021. "Residential coal-switch policy in China: Development, achievement, and challenge," Energy Policy, Elsevier, vol. 151(C).
    12. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    13. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    14. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    15. Yang, Shu & Zhang, Yanbing & Zhao, Dingtao, 2016. "Who exhibits more energy-saving behavior in direct and indirect ways in china? The role of psychological factors and socio-demographics," Energy Policy, Elsevier, vol. 93(C), pages 196-205.
    16. Lilin Xiong & Xiao Huang & Jie Li & Peng Mao & Xiang Wang & Rubing Wang & Meng Tang, 2018. "Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3 × 4 × 3 Full Factorial Design Analysis," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    17. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    18. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    19. Jia-Yu Zhong & Yuan-Chieh Lee & Chia-Jung Hsieh & Chun-Chieh Tseng & Lih-Ming Yiin, 2018. "Association between Dry Eye Disease, Air Pollution and Weather Changes in Taiwan," IJERPH, MDPI, vol. 15(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    2. Xi, Yan-Ao-Ming & Li, Yun-Ze & Chen, Ya-Hui & Jiang, Hai-Hao & Huang, Zhao-Bin, 2024. "Energy demand and carbon emission analyses of a solar-driven domestic regional environment mobile robot as household auxiliary heating and cooling method," Applied Energy, Elsevier, vol. 371(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    4. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    5. Małgorzata Poniatowska-Jaksch, 2021. "Energy Consumption in Central and Eastern Europe (CEE) Households in the Platform Economics," Energies, MDPI, vol. 14(4), pages 1-22, February.
    6. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    7. Imbulana Arachchi, Janaki & Managi, Shunsuke, 2021. "Preferences for energy sustainability: Different effects of gender on knowledge and importance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    9. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    10. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    11. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    12. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    13. Samdruk Dharshing & Stefanie Lena Hille, 2017. "The Energy Paradox Revisited: Analyzing the Role of Individual Differences and Framing Effects in Information Perception," Journal of Consumer Policy, Springer, vol. 40(4), pages 485-508, December.
    14. Huebner, Gesche M. & Shipworth, David, 2017. "All about size? – The potential of downsizing in reducing energy demand," Applied Energy, Elsevier, vol. 186(P2), pages 226-233.
    15. Park, Eunil & Kwon, Sang Jib, 2017. "What motivations drive sustainable energy-saving behavior?: An examination in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 494-502.
    16. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    17. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    18. Nieves García-de-Frutos & José Manuel Ortega-Egea & Javier Martínez-del-Río, 2018. "Anti-consumption for Environmental Sustainability: Conceptualization, Review, and Multilevel Research Directions," Journal of Business Ethics, Springer, vol. 148(2), pages 411-435, March.
    19. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    20. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.