IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp519-530.html
   My bibliography  Save this article

A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building

Author

Listed:
  • Papafragkou, Anastasios
  • Ghosh, Siddhartha
  • James, Patrick A.B.
  • Rogers, Alex
  • Bahaj, AbuBakr S.

Abstract

Traditional approaches to understand the problem of the energy performance in the domestic sector include on-site surveys by energy assessors and the installation of complex home energy monitoring systems. The time and money that needs to be invested by the occupants and the form of feedback generated by these approaches often makes them unattractive to householders. This paper demonstrates a simple, low cost method that generates thermal diagnostics for dwellings, measuring only one field dataset; internal temperature over a period of 1week. A thermal model, which is essentially a learning algorithm, generates a set of thermal diagnostics about the primary heating system, the occupants’ preferences and the impact of certain interventions, such as lowering the thermostat set-point. A simple clustering approach is also proposed to categorise homes according to their building fabric thermal performance and occupants’ energy efficiency with respect to ventilation. The advantage of this clustering approach is that the occupants receive tailored advice on certain actions that if taken will improve the overall thermal performance of a dwelling. Due to the method’s low cost and simplicity it could facilitate government initiatives, such as the ‘Green Deal’ in the UK.

Suggested Citation

  • Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:519-530
    DOI: 10.1016/j.apenergy.2014.08.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    2. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    4. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    5. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    6. Critchley, Roger & Gilbertson, Jan & Grimsley, Michael & Green, Geoff, 2007. "Living in cold homes after heating improvements: Evidence from Warm-Front, England's Home Energy Efficiency Scheme," Applied Energy, Elsevier, vol. 84(2), pages 147-158, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    2. Ling-Chin, J. & Taylor, W. & Davidson, P. & Reay, D. & Nazi, W.I. & Tassou, S. & Roskilly, A.P., 2019. "UK building thermal performance from industrial and governmental perspectives," Applied Energy, Elsevier, vol. 237(C), pages 270-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minoru Morita & Kazuyuki Iwata & Toshi H. Arimura, 2022. "The rebound effect in air conditioner usage: an empirical analysis of Japanese individuals’ behaviors," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 99-117, January.
    2. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    3. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    4. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    5. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    6. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Vélez-Henao, Johan-Andrés & García-Mazo, Claudia-Maria & Freire-González, Jaume & Vivanco, David Font, 2020. "Environmental rebound effect of energy efficiency improvements in Colombian households," Energy Policy, Elsevier, vol. 145(C).
    8. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    9. Simon Mathex & Lisette Ibanez & Raphaële Préget, 2023. "Distinguishing economic and moral compensation in the rebound effect: A theoretical and experimental approach," CEE-M Working Papers hal-04071161, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    10. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).
    11. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    12. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    13. Kearns, Ade & Whitley, Elise & Curl, Angela, 2019. "Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation)," Energy Policy, Elsevier, vol. 129(C), pages 1143-1155.
    14. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    15. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    16. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    17. Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
    18. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    19. Chen, Qian & Zha, Donglan & Wang, Lijun & Yang, Guanglei, 2022. "The direct CO2 rebound effect in households: Evidence from China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:519-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.