IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1292-1305.html
   My bibliography  Save this article

Assessing supply chain greenness from the perspective of embodied renewable energy – A data envelopment analysis using multi-regional input-output analysis

Author

Listed:
  • Wang, Qiang
  • Jiang, Feng
  • Li, Rongrong

Abstract

Previous assessments for the sustainability of global supply chains have mostly focused on the single environmental aspect, that is, the accounting of pollutant leakage. Considering that the impact of supply chain on sustainability is transnational and multi-dimensional, this study proposes a supply chain green-degree assessment method based on multi-regional input-output model (MRIO) and data envelopment analysis (DEA). The proposed method integrates economic and environmental factors embodied in the supply chains into a green-degree indicator, while taking into account the constraints of energy consumption structure. Based on this method, we account for the renewable and non-renewable energy consumption embodied in global supply chains and measure the supply chains green-degree. The results show that 27% of renewable energy is consumed in the cross-border production of goods and services, and the participation of renewable energy in global supply chains is increasing. The green-degree of the current global supply chains is quite low, with an average score of only 0.45. The outsourcing of production and processing activities has made developed economies' supply chains “less clean”, and their green-degree has dropped by 5.3% between 2000 and 2014, while the emerging developing economies’ have become cleaner, and their green-degree has increased by 10.5%.

Suggested Citation

  • Wang, Qiang & Jiang, Feng & Li, Rongrong, 2022. "Assessing supply chain greenness from the perspective of embodied renewable energy – A data envelopment analysis using multi-regional input-output analysis," Renewable Energy, Elsevier, vol. 189(C), pages 1292-1305.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1292-1305
    DOI: 10.1016/j.renene.2022.02.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    3. Wu, X.D. & Xia, X.H. & Chen, G.Q. & Wu, X.F. & Chen, B., 2016. "Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost," Applied Energy, Elsevier, vol. 184(C), pages 936-950.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    6. Hamilton, Thomas Gerard Adam & Kelly, Scott, 2017. "Low carbon energy scenarios for sub-Saharan Africa: An input-output analysis on the effects of universal energy access and economic growth," Energy Policy, Elsevier, vol. 105(C), pages 303-319.
    7. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    8. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    9. Xiao, Yanyan & Norris, Catherine Benoît & Lenzen, Manfred & Norris, Gregory & Murray, Joy, 2017. "How Social Footprints of Nations Can Assist in Achieving the Sustainable Development Goals," Ecological Economics, Elsevier, vol. 135(C), pages 55-65.
    10. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    11. Liu, Yajie & Dong, Feng, 2022. "What are the roles of consumers, automobile production enterprises, and the government in the process of banning gasoline vehicles? Evidence from a tripartite evolutionary game model," Energy, Elsevier, vol. 238(PC).
    12. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    13. repec:clg:wpaper:2008-02 is not listed on IDEAS
    14. Onno Kuik & Reyer Gerlagh, 2003. "Trade Liberalization and Carbon Leakage," The Energy Journal, , vol. 24(3), pages 97-120, July.
    15. Singhania, Monica & Saini, Neha, 2021. "Demystifying pollution haven hypothesis: Role of FDI," Journal of Business Research, Elsevier, vol. 123(C), pages 516-528.
    16. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    17. Bortolamedi, Markus, 2015. "Accounting for hidden energy dependency: The impact of energy embodied in traded goods on cross-country energy security assessments," Energy, Elsevier, vol. 93(P2), pages 1361-1372.
    18. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    19. Pan, Yuling & Dong, Feng, 2022. "Design of energy use rights trading policy from the perspective of energy vulnerability," Energy Policy, Elsevier, vol. 160(C).
    20. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    21. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    22. Lan Yang & Yutao Wang & Ranran Wang & Jiří Jaromír Klemeš & Cecília Maria Villas Bôas de Almeida & Mingzhou Jin & Xinzhu Zheng & Yuanbo Qiao, 2020. "Environmental-social-economic footprints of consumption and trade in the Asia-Pacific region," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    23. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    24. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    25. Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
    26. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    27. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    28. Wu, X.F. & Chen, G.Q., 2019. "Global overview of crude oil use: From source to sink through inter-regional trade," Energy Policy, Elsevier, vol. 128(C), pages 476-486.
    29. Anil Jindal & Kuldip Singh Sangwan, 2017. "Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors," Annals of Operations Research, Springer, vol. 257(1), pages 95-120, October.
    30. Leach, Melissa & MacGregor, Hayley & Scoones, Ian & Wilkinson, Annie, 2021. "Post-pandemic transformations: How and why COVID-19 requires us to rethink development," World Development, Elsevier, vol. 138(C).
    31. Zeren, Feyyaz & Akkuş, Hilmi Tunahan, 2020. "The relationship between renewable energy consumption and trade openness: New evidence from emerging economies," Renewable Energy, Elsevier, vol. 147(P1), pages 322-329.
    32. Chien-Ming Chen & Magali A. Delmas, 2012. "Measuring Eco-Inefficiency: A New Frontier Approach," Operations Research, INFORMS, vol. 60(5), pages 1064-1079, October.
    33. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    34. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    35. Nurjanni, Kartina Puji & Carvalho, Maria S. & Costa, Lino, 2017. "Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 421-432.
    36. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    37. An, Qingxian & Wu, Qifan & Li, Jinlin & Xiong, Beibei & Chen, Xiaohong, 2019. "Environmental efficiency evaluation for Xiangjiang River basin cities based on an improved SBM model and Global Malmquist index," Energy Economics, Elsevier, vol. 81(C), pages 95-103.
    38. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    39. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    40. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    41. Liu, Hongxun & Li, Jianglong & Long, Houyin & Li, Zhi & Le, Canyu, 2018. "Promoting energy and environmental efficiency within a positive feedback loop: Insights from global value chain," Energy Policy, Elsevier, vol. 121(C), pages 175-184.
    42. Charnes, A. & Cooper, W. W. & Rhodes, E., 1979. "Measuring the efficiency of decision-making units," European Journal of Operational Research, Elsevier, vol. 3(4), pages 339-338, July.
    43. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    44. Bloemhof-Ruwaard, Jacqueline M. & van Beek, Paul & Hordijk, Leen & Van Wassenhove, Luk N., 1995. "Interactions between operational research and environmental management," European Journal of Operational Research, Elsevier, vol. 85(2), pages 229-243, September.
    45. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Jin & Qiaoqiao Zhu & Hui Sun, 2023. "Temporal and Spatial Divergence of Embodied Carbon Emissions Transfer and the Drivers—Evidence from China’s Domestic Trade," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    2. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    3. Shouxin Bai & Shicheng Zhou & Yuyao Sheng & Xingwei Wang, 2022. "Does Lockdown Reduce Employment in Major Developing Countries? An Assessment Based on Multiregional Input–Output Model and Scenario Analysis," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    4. Vieira Tiago & Silva Ângela & Garcia Jorge Esparteiro & Alves Wellington, 2022. "Boosting Regional Socioeconomic Development through Logistics Activities: A Conceptual Model," Business Systems Research, Sciendo, vol. 13(3), pages 63-83, October.
    5. Song, Xiaoxin & Li, Rongrong, 2023. "Tracing and excavating critical paths and sectors for embodied energy consumption in global supply chains: A case study of China," Energy, Elsevier, vol. 284(C).
    6. Mengmeng Liu & Hao Wu & Haopeng Wang, 2023. "Will Trade Protection Trigger a Surge in Investment-Related CO 2 Emissions? Evidence from Multi-Regional Input–Output Model," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    7. Weixin Yang & Hao Gao & Yunpeng Yang & Jiacheng Liao, 2022. "Embodied Carbon in China’s Export Trade: A Multi Region Input-Output Analysis," IJERPH, MDPI, vol. 19(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhijiang Li & Decai Tang & Mang Han & Brandon J. Bethel, 2018. "Comprehensive Evaluation of Regional Sustainable Development Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    2. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    3. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    4. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    5. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    6. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    7. Lotfi, Farhad Hosseinzadeh & Saen, Reza Farzipoor & Moghaddas, Zohreh & Vaez-Ghasemi, Mohsen, 2023. "Using an SBM-NDEA model to assess the desirable and undesirable outputs of sustainable supply chain: A case study in wheat industry," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
    9. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    10. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    11. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    12. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    13. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    14. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    15. Jiao Hou & Xinhai Lu & Shiman Wu & Shangan Ke & Jia Li, 2022. "Analysis of the Dynamic Relationship between Green Economy Efficiency and Urban Land Development Intensity in China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    16. Song, Malin & Song, Yaqing & An, Qingxian & Yu, Huayin, 2013. "Review of environmental efficiency and its influencing factors in China: 1998–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 8-14.
    17. Chen, Chien-Ming & Wang, Hui, 2024. "Comparing eco-efficiency with productive efficiency: Addressing the dimensionality issue," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1170-1179.
    18. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    19. Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
    20. Delimiro Visbal-Cadavid & Mónica Martínez-Gómez & Francisco Guijarro, 2017. "Assessing the Efficiency of Public Universities through DEA. A Case Study," Sustainability, MDPI, vol. 9(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1292-1305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.