IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp254-270.html
   My bibliography  Save this article

Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique

Author

Listed:
  • Koo, Choongwan
  • Hong, Taehoon

Abstract

The operational rating system in building energy performance certificates (EPCs) has been used for systematically monitoring and diagnosing the energy performance in the operation and maintenance phases of existing buildings. However, there are several limitations of the conventional operational rating system, which can be subdivided into three aspects: (i) building category; (ii) region category; and (iii) space unit size. To overcome these challenges, this study conducted the problem analysis of the conventional operational rating system for existing buildings by using the statistical and geostatistical approaches. Based on the problem analysis, this study developed the dynamic operational rating (DOR) system for existing buildings by using the data-mining technique and the probability approach. The developed DOR system can be used as a tool for building energy performance diagnostics. To validate the applicability of the developed DOR system, educational facilities were selected as the representative type of existing buildings in South Korea. As a result, it was determined that the developed DOR system can solve the irrationality of the conventional operational rating system (i.e., the negative correlation between the space unit size and the CO2 emission density). Namely, the operational ratings of small buildings were adjusted upward while those of large buildings were adjusted downward. The developed DOR system can allow policymakers to establish the reasonable operational rating system for existing buildings, which can motivate the public to actively participate in energy-saving campaigns.

Suggested Citation

  • Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:254-270
    DOI: 10.1016/j.apenergy.2015.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Taehoon & Koo, Choongwan & Kim, Hyunjoong & Seon Park, Hyo, 2014. "Decision support model for establishing the optimal energy retrofit strategy for existing multi-family housing complexes," Energy Policy, Elsevier, vol. 66(C), pages 157-169.
    2. Pat McAllister & Franz Fuerst & Buki Ekeowa, 2011. "The Impact of Energy Performance Certificates on the Rental and Capital Values of Commercial Property," ERES eres2011_89, European Real Estate Society (ERES).
    3. Fuerst, Franz & McAllister, Patrick, 2011. "The impact of Energy Performance Certificates on the rental and capital values of commercial property assets," Energy Policy, Elsevier, vol. 39(10), pages 6608-6614, October.
    4. repec:arz:wpaper:eres2011-89 is not listed on IDEAS
    5. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    6. Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
    7. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    8. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    9. Hong, Taehoon & Koo, Choongwan & Kwak, Taehyun, 2013. "Framework for the implementation of a new renewable energy system in an educational facility," Applied Energy, Elsevier, vol. 103(C), pages 539-551.
    10. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    11. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    12. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    13. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Seon Park, Hyo, 2014. "Development of a new energy efficiency rating system for existing residential buildings," Energy Policy, Elsevier, vol. 68(C), pages 218-231.
    14. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
    15. Cong, Rong-Gang & Wei, Yi-Ming, 2012. "Experimental comparison of impact of auction format on carbon allowance market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4148-4156.
    16. Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
    17. Amecke, Hermann, 2012. "The impact of energy performance certificates: A survey of German home owners," Energy Policy, Elsevier, vol. 46(C), pages 4-14.
    18. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Lee, Jaewook, 2021. "A data-driven approach for establishing a CO2 emission benchmark for a multi-family housing complex using data mining techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
    3. Marzouk, Mohamed & Seleem, Noreihan, 2018. "Assessment of existing buildings performance using system dynamics technique," Applied Energy, Elsevier, vol. 211(C), pages 1308-1323.
    4. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Improvements of the operational rating system for existing residential buildings," Applied Energy, Elsevier, vol. 193(C), pages 112-124.
    5. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    6. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok, 2016. "Development of an integrated energy benchmark for a multi-family housing complex using district heating," Applied Energy, Elsevier, vol. 179(C), pages 1048-1061.
    7. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    8. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
    10. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    11. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    12. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    13. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    14. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    15. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    16. Vaisi, Salah & Varmazyari, Pouya & Esfandiari, Masoud & Sharbaf, Sara A., 2023. "Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region," Applied Energy, Elsevier, vol. 336(C).
    17. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    18. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    19. Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    2. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    3. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    4. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Seon Park, Hyo, 2014. "Development of a new energy efficiency rating system for existing residential buildings," Energy Policy, Elsevier, vol. 68(C), pages 218-231.
    5. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    6. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    7. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    8. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    9. Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
    10. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok, 2016. "Development of an integrated energy benchmark for a multi-family housing complex using district heating," Applied Energy, Elsevier, vol. 179(C), pages 1048-1061.
    11. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
    12. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    13. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    14. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    15. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    16. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    17. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    18. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    19. Hyland, Marie & Lyons, Ronan C. & Lyons, Seán, 2013. "The value of domestic building energy efficiency — evidence from Ireland," Energy Economics, Elsevier, vol. 40(C), pages 943-952.
    20. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:254-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.