IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3668-d817551.html
   My bibliography  Save this article

Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors

Author

Listed:
  • Jonida Murataj

    (School of Architecture, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Rajat Gupta

    (Low Carbon Building Group, Oxford Institute for Sustainable Development, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Fergus Nicol

    (School of Architecture, Oxford Brookes University, Oxford OX3 0BP, UK)

Abstract

Oversimplifying occupant behaviour using static and standard schedules has been identified as a limitation of building energy simulation tools. This paper describes the use of hierarchical cluster analysis to establish the most typical indoor temperature profiles of Albanian dwellings based on monitored indoor temperatures in winter and summer, along with building and occupant surveys undertaken in 49 randomly selected dwellings in Tirana. Three statistically different profiles were developed for each summer and winter, indicating that homes are used in different ways, as well as revealing possible comfort requirements. Furthermore, statistical analysis was undertaken to determine the strength of the association between the clusters and contextual factors related to the building, household, and occupancy. A statistically significant association was found between the presence of children and the clusters in winter, suggesting that families with dependents use more energy. Building-related factors including building type, building age, and wall insulation were found to be statistically significantly associated with clusters in summer. These profiles could provide more accurate outcomes of energy consumption of Albanian homes and energy savings from retrofits. They could also facilitate the development of low-energy strategies and policies for specific households.

Suggested Citation

  • Jonida Murataj & Rajat Gupta & Fergus Nicol, 2022. "Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors," Energies, MDPI, vol. 15(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3668-:d:817551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    2. Schaffrin, André & Reibling, Nadine, 2015. "Household energy and climate mitigation policies: Investigating energy practices in the housing sector," Energy Policy, Elsevier, vol. 77(C), pages 1-10.
    3. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    4. Belaïd, Fateh & Ranjbar, Zeinab & Massié, Camille, 2021. "Exploring the cost-effectiveness of energy efficiency implementation measures in the residential sector," Energy Policy, Elsevier, vol. 150(C).
    5. Vivian W. Y. Tam & Laura Almeida & Khoa Le, 2018. "Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    2. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    3. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    4. McKenna, R. & Hofmann, L. & Merkel, E. & Fichtner, W. & Strachan, N., 2016. "Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake," Energy Policy, Elsevier, vol. 97(C), pages 13-26.
    5. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    6. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    8. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    9. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    10. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    11. Belaïd, Fateh & Flambard, Véronique, 2023. "Boosting buildings energy efficiency: The impact of social norms and motivational feedback," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 26-39.
    12. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    13. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    14. Eugene Mohareb & Arman Hashemi & Mehdi Shahrestani & Minna Sunikka-Blank, 2017. "Retrofit Planning for the Performance Gap: Results of a Workshop on Addressing Energy, Health and Comfort Needs in a Protected Building," Energies, MDPI, vol. 10(8), pages 1-17, August.
    15. Chegut, Andrea & Eichholtz, Piet & Holtermans, Rogier, 2016. "Energy efficiency and economic value in affordable housing," Energy Policy, Elsevier, vol. 97(C), pages 39-49.
    16. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    17. Pierryves Padey & Kyriaki Goulouti & Guy Wagner & Blaise Périsset & Sébastien Lasvaux, 2021. "Understanding the Reasons behind the Energy Performance Gap of an Energy-Efficient Building, through a Probabilistic Approach and On-Site Measurements," Energies, MDPI, vol. 14(19), pages 1-15, September.
    18. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    19. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    20. Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3668-:d:817551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.