IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224019613.html
   My bibliography  Save this article

Energy supply structure optimization of integrated energy system considering load uncertainty at the planning stage

Author

Listed:
  • Ma, Xuran
  • Wang, Meng
  • Wang, Peng
  • Wang, Yixin
  • Mao, Ding
  • Kosonen, Risto

Abstract

Under the trend of global carbon neutrality, the integrated energy system with the characteristics of multi-energy scheduling and gradient utilizing will be widely constructed and applied in the future energy market. For the construction of energy systems in emerging building complex, this paper analyzes the load probability characteristics of regional building complex at the planning stage, and conducts an aggregation analysis of its multiple uncertainties, and obtains the conclusion that the load factor at time t obeys the normal distribution. In order to formulate this uncertainty, this paper combines the case study with the scenario analysis method containing scenario generation and reduction to transform the stochastic programming model into several deterministic models and analyses the discrepancies of the optimization results under different objectives and different load variances. The results show that after considering load-side uncertainty, the total system capacity increases by 7 %, the total investment under the minimum investment objective by 4 %, and the carbon emission under the minimum carbon emission objective by 3 %. In addition, the system needs to pay 32.8 % of the total investment increment to obtain 80 % carbon reduction when adopting carbon emissions as the objective.

Suggested Citation

  • Ma, Xuran & Wang, Meng & Wang, Peng & Wang, Yixin & Mao, Ding & Kosonen, Risto, 2024. "Energy supply structure optimization of integrated energy system considering load uncertainty at the planning stage," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019613
    DOI: 10.1016/j.energy.2024.132187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jae Hong & Kim, Tong Seop & Kim, Eui-hwan, 2017. "Prediction of power generation capacity of a gas turbine combined cycle cogeneration plant," Energy, Elsevier, vol. 124(C), pages 187-197.
    2. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    3. Sun, Qingkai & Wang, Xiaojun & Liu, Zhao & Mirsaeidi, Sohrab & He, Jinghan & Pei, Wei, 2022. "Multi-agent energy management optimization for integrated energy systems under the energy and carbon co-trading market," Applied Energy, Elsevier, vol. 324(C).
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    6. Edwards, K.C. & Finn, D.P., 2015. "Generalised water flow rate control strategy for optimal part load operation of ground source heat pump systems," Applied Energy, Elsevier, vol. 150(C), pages 50-60.
    7. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    8. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    9. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    10. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    11. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    12. Fu, Lin & Li, Yonghong & Wu, Yanting & Wang, Xiaoyin & Jiang, Yi, 2021. "Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source," Energy, Elsevier, vol. 230(C).
    13. Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
    14. Huang, Yun-Hsun & Wu, Jung-Hua & Hsu, Yu-Ju, 2016. "Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty," Energy, Elsevier, vol. 116(P1), pages 1145-1157.
    15. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    3. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    4. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    5. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    6. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    7. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    8. Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
    9. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems," Energy, Elsevier, vol. 238(PA).
    10. Fan, Guangyao & Yu, Binbin & Sun, Bo & Li, Fan, 2024. "Multi-time-space scale optimization for a hydrogen-based regional multi-energy system," Applied Energy, Elsevier, vol. 371(C).
    11. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Pilpola, Sannamari & Lund, Peter D., 2020. "Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways," Energy, Elsevier, vol. 201(C).
    13. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    14. Liu, Jizhen & Ma, Lifei & Wang, Qinghua, 2023. "Energy management method of integrated energy system based on collaborative optimization of distributed flexible resources," Energy, Elsevier, vol. 264(C).
    15. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    16. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    19. Ezenwa Udoha & Saptarshi Das & Mohammad Abusara, 2024. "Centralised Control and Energy Management of Multiple Interconnected Standalone AC Microgrids," Energies, MDPI, vol. 17(20), pages 1-26, October.
    20. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.