Souhaib Ben Taieb
Personal Details
First Name: | Souhaib |
Middle Name: | |
Last Name: | Ben Taieb |
Suffix: | |
RePEc Short-ID: | pbe791 |
[This author has chosen not to make the email address public] | |
http://www.souhaib-bentaieb.com | |
Affiliation
Department of Econometrics and Business Statistics
Monash Business School
Monash University
Melbourne, Australiahttp://business.monash.edu/econometrics-and-business-statistics
RePEc:edi:dxmonau (more details at EDIRC)
Research output
Jump to: Working papers ArticlesWorking papers
- Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020.
"Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand,"
Monash Econometrics and Business Statistics Working Papers
41/20, Monash University, Department of Econometrics and Business Statistics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
- Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013. "Machine learning strategies for time series forecasting," ULB Institutional Repository 2013/167761, ULB -- Universite Libre de Bruxelles.
- Souhaib Ben Taieb & Rob J Hyndman, 2012. "Recursive and direct multi-step forecasting: the best of both worlds," Monash Econometrics and Business Statistics Working Papers 19/12, Monash University, Department of Econometrics and Business Statistics.
Articles
- Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011.
"Conditionally dependent strategies for multiple-step-ahead prediction in local learning,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699.
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
- Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020.
"Scores for Multivariate Distributions and Level Sets,"
Papers
2002.09578, arXiv.org, revised Jun 2023.
Cited by:
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020.
"Forecasting: theory and practice,"
Papers
2012.03854, arXiv.org, revised Jan 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020.
"Forecasting: theory and practice,"
Papers
2012.03854, arXiv.org, revised Jan 2022.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020.
"Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand,"
Monash Econometrics and Business Statistics Working Papers
41/20, Monash University, Department of Econometrics and Business Statistics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
Cited by:
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017.
"Coherent Probabilistic Forecasts for Hierarchical Time Series,"
Monash Econometrics and Business Statistics Working Papers
3/17, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023.
"Forecast Reconciliation: A Review,"
Monash Econometrics and Business Statistics Working Papers
8/23, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Ziel, Florian, 2019. "Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1400-1408.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Souhaib Ben Taieb & Rob J Hyndman, 2014.
"Boosting multi-step autoregressive forecasts,"
Monash Econometrics and Business Statistics Working Papers
13/14, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020.
"Forecasting: theory and practice,"
Papers
2012.03854, arXiv.org, revised Jan 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
- Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
- Jing Zeng, 2014. "Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?," Working Paper Series of the Department of Economics, University of Konstanz 2014-20, Department of Economics, University of Konstanz.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020.
"Forecasting: theory and practice,"
Papers
2012.03854, arXiv.org, revised Jan 2022.
- Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013.
"Machine learning strategies for time series forecasting,"
ULB Institutional Repository
2013/167761, ULB -- Universite Libre de Bruxelles.
Cited by:
- Anastasios Petropoulos & Vassilis Siakoulis & Konstantinos P. Panousis & Loukas Papadoulas & Sotirios Chatzis, 2023. "Macroeconomic forecasting and sovereign risk assessment using deep learning techniques," Papers 2301.09856, arXiv.org.
- Colombo, Danilo & Lima, Gilson Brito Alves & Pereira, Danillo Roberto & Papa, João P., 2020. "Regression-based finite element machines for reliability modeling of downhole safety valves," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.
- Marcin Chlebus & Michał Dyczko & Michał Woźniak, 2020.
"Nvidia’s stock returns prediction using machine learning techniques for time series forecasting problem,"
Working Papers
2020-22, Faculty of Economic Sciences, University of Warsaw.
- Chlebus Marcin & Dyczko Michał & Woźniak Michał, 2021. "Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem," Central European Economic Journal, Sciendo, vol. 8(55), pages 44-62, January.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
- Daniel Vassallo & Raghavendra Krishnamurthy & Thomas Sherman & Harindra J. S. Fernando, 2020. "Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting," Energies, MDPI, vol. 13(20), pages 1-19, October.
- Syed Ali Jafar Zaidi & Saad Tariq & Samir Brahim Belhaouari, 2021. "Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier," Data, MDPI, vol. 6(11), pages 1-18, November.
- Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
- Twumasi, Clement & Twumasi, Juliet, 2022. "Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1258-1277.
- Marinoiu Cristian, 2018. "AVERAGE MONTHLY RAINFALL FORECAST IN ROMANIA BY USING k-NEAREST NEIGHBORS REGRESSION," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 5-12, August.
- Ran-Ran He & Yuanfang Chen & Qin Huang & Zheng-Wei Pan & Yong Liu, 2020. "Predictability of Monthly Streamflow Time Series and its Relationship with Basin Characteristics: an Empirical Study Based on the MOPEX Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4991-5007, December.
- Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
- Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Benevento, Elisabetta & Aloini, Davide & Squicciarini, Nunzia, 2023. "Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques," International Journal of Forecasting, Elsevier, vol. 39(1), pages 192-208.
- Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
- Daniel Ramos & Pedro Faria & Zita Vale & João Mourinho & Regina Correia, 2020. "Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Pawel Rymarczyk & Piotr Golabek & Sylwia Skrzypek - Ahmed & Magdalena Rzemieniak, 2021. "Profiling and Segmenting Clients with the Use of Machine Learning Algorithms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 513-522.
- Ariel Navon & Yosi Keller, 2017. "Financial Time Series Prediction Using Deep Learning," Papers 1711.04174, arXiv.org.
- Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.
- Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
- Souhaib Ben Taieb & Rob J Hyndman, 2012.
"Recursive and direct multi-step forecasting: the best of both worlds,"
Monash Econometrics and Business Statistics Working Papers
19/12, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Manuel Paquette-Dupuis & Dalibor Stevanovic & Rachidi Kotchoni, 2019. "Prévisions de l’activité économique en temps de crise," CIRANO Project Reports 2019rp-04, CIRANO.
- Amirhossein Sohrabbeig & Omid Ardakanian & Petr Musilek, 2023. "Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess," Forecasting, MDPI, vol. 5(4), pages 1-13, December.
- Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
- Eran Raviv, 2013. "Prediction Bias Correction for Dynamic Term Structure Models," Tinbergen Institute Discussion Papers 13-041/III, Tinbergen Institute.
- Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
- Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Meenakshi Narayan & Ann Majewicz Fey, 2020. "Developing a novel force forecasting technique for early prediction of critical events in robotics," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-34, May.
- Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
Articles
- Ben Taieb, Souhaib & Hyndman, Rob J., 2014.
"A gradient boosting approach to the Kaggle load forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
Cited by:
- Prpić, John, 2017. "A Framework for Policy Crowdsourcing," SocArXiv pmfdx, Center for Open Science.
- Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
- Li, Qing & Yu, Shuai & Échevin, Damien & Fan, Min, 2022. "Is poverty predictable with machine learning? A study of DHS data from Kyrgyzstan," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
- Paulino José Garcia Nieto & Esperanza García Gonzalo & Fernando Sanchez Lasheras & Antonio Bernardo Sánchez, 2020. "A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Technology.
- Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2020. "Temporal mixture ensemble models for intraday volume forecasting in cryptocurrency exchange markets," Papers 2005.09356, arXiv.org, revised Dec 2020.
- Tartakovsky, Alexandre M. & Ma, Tong & Barajas-Solano, David A. & Tipireddy, Ramakrishna, 2023. "Physics-informed Gaussian process regression for states estimation and forecasting in power grids," International Journal of Forecasting, Elsevier, vol. 39(2), pages 967-980.
- Wang, Lin & Lv, Sheng-Xiang & Zeng, Yu-Rong, 2018. "Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China," Energy, Elsevier, vol. 155(C), pages 1013-1031.
- Prpić, John & Shukla, Prashant P. & Kietzmann, Jan H. & McCarthy, Ian P., 2015. "How to work a crowd: Developing crowd capital through crowdsourcing," Business Horizons, Elsevier, vol. 58(1), pages 77-85.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Samuel Atuahene & Yukun Bao & Patricia Semwaah Gyan & Yao Yevenyo Ziggah, 2019. "Accurate Forecast Improvement Approach for Short Term Load Forecasting Using Hybrid Filter-Wrap Feature Selection," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 5(2), pages 37-49, January.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Araz Taeihagh, 2017. "Crowdsourcing, Sharing Economies and Development," Journal of Developing Societies, , vol. 33(2), pages 191-222, June.
- Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
- Lahiri, Kajal & Yang, Cheng, 2022.
"Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Kajal Lahiri & Cheng Yang, 2021. "Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York," CESifo Working Paper Series 9365, CESifo.
- Hui Hu & Jianfeng Zhang & Tao Li, 2021. "A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5119-5138, December.
- Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015.
"Predicting Recessions With Boosted Regression Trees,"
Working Papers
2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
- Maher Selim & Ryan Zhou & Wenying Feng & Peter Quinsey, 2021. "Estimating Energy Forecasting Uncertainty for Reliable AI Autonomous Smart Grid Design," Energies, MDPI, vol. 14(1), pages 1-15, January.
- Naudé, Wim & Bray, Amy & Lee, Celina, 2021. "Crowdsourcing Artificial Intelligence in Africa: Findings from a Machine Learning Contest," IZA Discussion Papers 14545, Institute of Labor Economics (IZA).
- Prpić, John, 2017. "How To Work A Crowd: Developing Crowd Capital Through Crowdsourcing," SocArXiv jer9k, Center for Open Science.
- Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
- Prpić, John, 2017. "The Fundamentals of Policy Crowdsourcing," SocArXiv wdtvh, Center for Open Science.
- Jiaming Liu & Chong Wu & Yongli Li, 2019. "Improving Financial Distress Prediction Using Financial Network-Based Information and GA-Based Gradient Boosting Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 851-872, February.
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang & Happy Aprillia & Che-Yuan Hsu & Jie-Lun Zhong & Nguyễn H. Phương, 2021. "Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting," Energies, MDPI, vol. 14(16), pages 1-23, August.
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
- Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
- Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Prpić, John, 2017. "Experiments on Crowdsourcing Policy Assessment," SocArXiv qznpk, Center for Open Science.
- Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
- Prpić, John, 2017. "MOOCs and Crowdsourcing: Massive Courses and Massive Resources," SocArXiv uwess, Center for Open Science.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
- Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez & Antonio Guillamón & Alberto Falces & Ana García-Garre & Antonio Gabaldón, 2019. "Integration of Demand Response and Short-Term Forecasting for the Management of Prosumers’ Demand and Generation," Energies, MDPI, vol. 13(1), pages 1-31, December.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Araz Taeihagh, 2017. "Crowdsourcing: a new tool for policy-making?," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(4), pages 629-647, December.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011.
"Conditionally dependent strategies for multiple-step-ahead prediction in local learning,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699.
Cited by:
- Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
- Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020.
"Forecasting: theory and practice,"
Papers
2012.03854, arXiv.org, revised Jan 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
- Twumasi, Clement & Twumasi, Juliet, 2022. "Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1258-1277.
- Wu, Yujie & Wang, Jianzhou, 2016. "A novel hybrid model based on artificial neural networks for solar radiation prediction," Renewable Energy, Elsevier, vol. 89(C), pages 268-284.
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Li, Yanfei & Shi, Huipeng & Han, Fengze & Duan, Zhu & Liu, Hui, 2019. "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," Renewable Energy, Elsevier, vol. 135(C), pages 540-553.
- Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
- V. Kamini & V. Ravi & A. Prinzie & D. Van Den Poel, 2013. "Cash Demand Forecasting in ATMs by Clustering and Neural Networks," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/865, Ghent University, Faculty of Economics and Business Administration.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
More information
Research fields, statistics, top rankings, if available.Statistics
Access and download statistics for all items
Co-authorship network on CollEc
NEP Fields
NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 5 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.- NEP-ECM: Econometrics (4) 2014-04-29 2015-06-20 2017-04-30 2020-03-23
- NEP-FOR: Forecasting (4) 2014-04-29 2015-06-20 2017-04-30 2020-12-07
- NEP-ETS: Econometric Time Series (3) 2014-04-29 2015-06-20 2017-04-30
- NEP-ORE: Operations Research (3) 2014-04-29 2015-06-20 2020-12-07
- NEP-ENE: Energy Economics (2) 2015-06-20 2020-12-07
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.
To update listings or check citations waiting for approval, Souhaib Ben Taieb should log into the RePEc Author Service.
To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.
To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.
Please note that most corrections can take a couple of weeks to filter through the various RePEc services.