IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5488-d431761.html
   My bibliography  Save this article

Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting

Author

Listed:
  • Daniel Vassallo

    (Department of Civil & Environmental Engineering and Earth Sciences (CEEES), University of Notre Dame, Notre Dame, IN 46556, USA)

  • Raghavendra Krishnamurthy

    (Pacific Northwest National Laboratory, Richland, WA 99354, USA)

  • Thomas Sherman

    (CRCL Solutions, LLC, South Bend, IN 46617, UAS)

  • Harindra J. S. Fernando

    (Department of Civil & Environmental Engineering and Earth Sciences (CEEES), University of Notre Dame, Notre Dame, IN 46556, USA)

Abstract

Although the random forest (RF) model is a powerful machine learning tool that has been utilized in many wind speed/power forecasting studies, there has been no consensus on optimal RF modeling strategies. This study investigates three basic questions which aim to assist in the discernment and quantification of the effects of individual model properties, namely: (1) using a standalone RF model versus using RF as a correction mechanism for the persistence approach, (2) utilizing a recursive versus direct multi-step forecasting strategy, and (3) training data availability on model forecasting accuracy from one to six hours ahead. These questions are investigated utilizing data from the FINO1 offshore platform and Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) C1 site, and testing results are compared to the persistence method. At FINO1, due to the presence of multiple wind farms and high inter-annual variability, RF is more effective as an error-correction mechanism for the persistence approach. The direct forecasting strategy is seen to slightly outperform the recursive strategy, specifically for forecasts three or more steps ahead. Finally, increased data availability (up to ∼8 equivalent years of hourly training data) appears to continually improve forecasting accuracy, although changing environmental flow patterns have the potential to negate such improvement. We hope that the findings of this study will assist future researchers and industry professionals to construct accurate, reliable RF models for wind speed forecasting.

Suggested Citation

  • Daniel Vassallo & Raghavendra Krishnamurthy & Thomas Sherman & Harindra J. S. Fernando, 2020. "Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting," Energies, MDPI, vol. 13(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5488-:d:431761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013. "Machine learning strategies for time series forecasting," ULB Institutional Repository 2013/167761, ULB -- Universite Libre de Bruxelles.
    2. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    4. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    5. Zexian Sun & Hexu Sun & Jingxuan Zhang, 2018. "Multistep Wind Speed and Wind Power Prediction Based on a Predictive Deep Belief Network and an Optimized Random Forest," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, July.
    6. Dickey, David A & Pantula, Sastry G, 1987. "Determining the Ordering of Differencing in Autoregressive Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 455-461, October.
    7. Dupré, Aurore & Drobinski, Philippe & Alonzo, Bastien & Badosa, Jordi & Briard, Christian & Plougonven, Riwal, 2020. "Sub-hourly forecasting of wind speed and wind energy," Renewable Energy, Elsevier, vol. 145(C), pages 2373-2379.
    8. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    9. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    10. Dongxiao Niu & Di Pu & Shuyu Dai, 2018. "Ultra-Short-Term Wind-Power Forecasting Based on the Weighted Random Forest Optimized by the Niche Immune Lion Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, April.
    11. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Snezhana Gocheva-Ilieva & Atanas Ivanov & Hristina Kulina & Maya Stoimenova-Minova, 2023. "Multi-Step Ahead Ex-Ante Forecasting of Air Pollutants Using Machine Learning," Mathematics, MDPI, vol. 11(7), pages 1-26, March.
    3. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    4. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.
    5. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    6. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    7. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    9. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    10. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    11. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    12. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    13. Paweł Piotrowski & Mirosław Parol & Piotr Kapler & Bartosz Fetliński, 2022. "Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control," Energies, MDPI, vol. 15(7), pages 1-23, April.
    14. Liu, Hui & Duan, Zhu, 2020. "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection," Applied Energy, Elsevier, vol. 261(C).
    15. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    16. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    17. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    18. Jianguo Zhou & Xiaolei Xu & Xuejing Huo & Yushuo Li, 2019. "Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    19. Li, Wenzhe & Jia, Xiaodong & Li, Xiang & Wang, Yinglu & Lee, Jay, 2021. "A Markov model for short term wind speed prediction by integrating the wind acceleration information," Renewable Energy, Elsevier, vol. 164(C), pages 242-253.
    20. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5488-:d:431761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.