Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xinqiang Chen & Jinquan Lu & Jiansen Zhao & Zhijian Qu & Yongsheng Yang & Jiangfeng Xian, 2020. "Traffic Flow Prediction at Varied Time Scales via Ensemble Empirical Mode Decomposition and Artificial Neural Network," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
- Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011.
"Conditionally dependent strategies for multiple-step-ahead prediction in local learning,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
- Bin Qiu & Yun Zhao, 2022. "Research on Improved Traffic Flow Prediction Network Based on CapsNet," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
- Zhou, Tuqiang & Wu, Wanting & Peng, Liqun & Zhang, Mingyang & Li, Zhixiong & Xiong, Yubing & Bai, Yuelong, 2022. "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Omer Saud Azeez & Biswajeet Pradhan & Helmi Z. M. Shafri, 2018. "Vehicular CO Emission Prediction Using Support Vector Regression Model and GIS," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
- Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
- Binglei Xie & Yu Sun & Xiaolong Huang & Le Yu & Gangyan Xu, 2020. "Travel Characteristics Analysis and Passenger Flow Prediction of Intercity Shuttles in the Pearl River Delta on Holidays," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
- Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
- Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuanfeng Zhao & Chao Wang & Pei Wei & Qingqing Zhao, 2020. "Research on the Deep Recognition of Urban Road Vehicle Flow Based on Deep Learning," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
- Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
- Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
- Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
- Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
- Muhammad Aqib & Rashid Mehmood & Ahmed Alzahrani & Iyad Katib & Aiiad Albeshri & Saleh M. Altowaijri, 2019. "Rapid Transit Systems: Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs," Sustainability, MDPI, vol. 11(10), pages 1-33, May.
- Marian Kampik & Krzysztof Bodzek & Anna Piaskowy & Adam Pilśniak & Marcin Fice, 2023. "An Analysis of Energy Consumption in Railway Signal Boxes," Energies, MDPI, vol. 16(24), pages 1-21, December.
- Lu Peng & Sheng‐Xiang Lv & Lin Wang, 2024. "Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model‐agnostic explanations for multivariate wind speed forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2064-2087, September.
- Hailin Zheng & Qinyou Hu & Chun Yang & Jinhai Chen & Qiang Mei, 2021. "Transmission Path Tracking of Maritime COVID-19 Pandemic via Ship Sailing Pattern Mining," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
- Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
- Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
- Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
- Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
- Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Wang, Minjie & Yang, Su & Sun, Yi & Gao, Jun, 2017. "Discovering urban mobility patterns with PageRank based traffic modeling and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 23-34.
- Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
- Qiang Luo & Xiaodong Zang & Xu Cai & Huawei Gong & Jie Yuan & Junheng Yang, 2021. "Vehicle Lane-Changing Safety Pre-Warning Model under the Environment of the Vehicle Networking," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
- Ahmed Abdulkareem Ahmed Adulaimi & Biswajeet Pradhan & Subrata Chakraborty & Abdullah Alamri, 2021. "Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS," Energies, MDPI, vol. 14(16), pages 1-19, August.
- Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
More about this item
Keywords
short-term passenger flow prediction; time series adaptive decomposition; subway systems; combination model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7949-:d:1145599. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.