IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1507-1520.html
   My bibliography  Save this article

Instance-based meta-learning for conditionally dependent univariate multi-step forecasting

Author

Listed:
  • Cerqueira, Vitor
  • Torgo, Luis
  • Bontempi, Gianluca

Abstract

Multi-step prediction is a key challenge in univariate forecasting. However, forecasting accuracy decreases as predictions are made further into the future. This is caused by the decreasing predictability and the error propagation along the horizon. In this paper, we propose a novel method called Forecasted Trajectory Neighbors (FTN) for multi-step forecasting with univariate time series. FTN is a meta-learning strategy that can be integrated with any state-of-the-art multi-step forecasting approach. It works by using training observations to correct the errors made during multiple predictions. This is accomplished by retrieving the nearest neighbors of the multi-step forecasts and averaging these for prediction. The motivation is to introduce, in a lightweight manner, a conditional dependent constraint across the forecasting horizons. Such a constraint, not always taken into account by most strategies, can be considered as a sort of regularization element. We carried out extensive experiments using 7795 time series from different application domains. We found that our method improves the performance of several state-of-the-art multi-step forecasting methods. An implementation of the proposed method is publicly available online, and the experiments are reproducible.

Suggested Citation

  • Cerqueira, Vitor & Torgo, Luis & Bontempi, Gianluca, 2024. "Instance-based meta-learning for conditionally dependent univariate multi-step forecasting," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1507-1520.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1507-1520
    DOI: 10.1016/j.ijforecast.2023.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1507-1520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.