IDEAS home Printed from https://ideas.repec.org/a/aiy/jnjaer/v23y2024i3p674-695.html
   My bibliography  Save this article

Forecasting The Economic Growth of Sverdlovsk Region: A Comparative Analysis of Machine Learning, Linear Regression and Autoregressive Models

Author

Listed:
  • Daniel Musafiri Balungu
  • Avinash Kumar

Abstract

The relevance of accurate economic forecasting cannot be overstated in today's rapidly changing global economy. Decision-makers in both the public and private sectors rely heavily on reliable forecasts to make informed decisions about resource allocation, investment strategies, and policy development. In this context, the importance of leveraging advanced analytical techniques, such as machine learning, to improve the accuracy of economic forecasts has become increasingly apparent. The purpose of this study is to explore the use of different forecasting models in predicting the dynamics of the GRP of the Sverdlovsk region in Russia, with a focus on the potential benefits of integrating machine learning techniques. The central hypothesis underlying this study is that machine learning models have the potential to outperform traditional autoregressive models in predicting economic growth. By leveraging a rich dataset that includes yearly GRP data and macroeconomic indicators from 2005 to 2022, the research procedure involved a comprehensive comparative analysis of different modeling approaches. The main findings of this study highlight the superior performance of the random forest model in forecasting GRP growth compared to the traditional SARIMAX model. These results not only provide valuable insights into the predictive power of machine learning algorithms in economic forecasting but also underscore the potential benefits of adopting advanced analytical techniques in decision-making processes. By demonstrating the superiority of machine learning models in predicting economic indicators like GRP, this study contributes to the growing body of literature on the application of data-driven approaches in economic analysis. Ultimately, the theoretical and practical significance of these findings lies in their implications for improving the accuracy and reliability of economic forecasts, thereby enabling more informed decision-making in a rapidly evolving economic landscape.

Suggested Citation

  • Daniel Musafiri Balungu & Avinash Kumar, 2024. "Forecasting The Economic Growth of Sverdlovsk Region: A Comparative Analysis of Machine Learning, Linear Regression and Autoregressive Models," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(3), pages 674-695.
  • Handle: RePEc:aiy:jnjaer:v:23:y:2024:i:3:p:674-695
    DOI: https://doi.org/10.15826/vestnik.2024.23.3.027
    as

    Download full text from publisher

    File URL: https://journalaer.ru//fileadmin/user_upload/site_15934/2024/05_Balungu_Kumar.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.15826/vestnik.2024.23.3.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013. "Machine learning strategies for time series forecasting," ULB Institutional Repository 2013/167761, ULB -- Universite Libre de Bruxelles.
    2. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    3. Prithwiraj Choudhury & Ryan T. Allen & Michael G. Endres, 2021. "Machine learning for pattern discovery in management research," Strategic Management Journal, Wiley Blackwell, vol. 42(1), pages 30-57, January.
    4. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    5. Lavrovskiy, B. N. & Shiltsin, E. A., 2016. "Spatial Configuration of Gross Regional Product of Russian Regions: Estimation and Forecast," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 2(2), pages 205-215.
    6. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    7. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    8. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    9. Lisa-Cheree Martin, 2019. "Machine Learning vs Traditional Forecasting Methods: An Application to South African GDP," Working Papers 12/2019, Stellenbosch University, Department of Economics.
    10. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    11. Nattapong Puttanapong & Nutchapon Prasertsoong & Wichaya Peechapat, 2023. "Predicting Provincial Gross Domestic Product Using Satellite Data and Machine Learning Methods: A Case Study of Thailand," Asian Development Review (ADR), World Scientific Publishing Co. Pte. Ltd., vol. 40(02), pages 39-85, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
    2. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    3. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    4. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    5. Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
    6. Kristian Jönsson, 2020. "Machine Learning and Nowcasts of Swedish GDP," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 123-134, November.
    7. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Jan Schulz & Kerstin Hötte & Daniel M. Mayerhoffer, 2024. "Pluralist economics in an era of polycrisis," Review of Evolutionary Political Economy, Springer, vol. 5(2), pages 201-218, September.
    9. Ofori, Isaac Kwesi, 2021. "Catching The Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," EconStor Preprints 235482, ZBW - Leibniz Information Centre for Economics.
    10. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    11. Holtemöller, Oliver & Kozyrev, Boris, 2023. "Forecasting Economic Activity with a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to German GDP," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277688, Verein für Socialpolitik / German Economic Association.
    12. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    13. Byron Botha & Geordie Reid & Tim Olds & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African GDP using a suite of statistical models," Working Papers 11001, South African Reserve Bank.
    14. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," RBA Research Discussion Papers rdp2024-04, Reserve Bank of Australia.
    15. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
    16. Marcelo C. Medeiros & Henrique F. Pires, 2021. "The Proper Use of Google Trends in Forecasting Models," Papers 2104.03065, arXiv.org, revised Apr 2021.
    17. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    18. Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
    19. Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
    20. Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2024. "What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from the Lasso Regularization and Inferential Techniques," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 144-179, March.

    More about this item

    Keywords

    economic growth; gross regional product; regional economy; machine learning; time series;
    All these keywords.

    JEL classification:

    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiy:jnjaer:v:23:y:2024:i:3:p:674-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalia Starodubets (email available below). General contact details of provider: https://edirc.repec.org/data/seurfru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.