IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i11p112-d670342.html
   My bibliography  Save this article

Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier

Author

Listed:
  • Syed Ali Jafar Zaidi

    (Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Saad Tariq

    (Department of Information Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Samir Brahim Belhaouari

    (Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar)

Abstract

Machine learning (ML)-based prediction is considered an important technique for improving decision making during the planning process. Modern ML models are used for prediction, prioritization, and decision making. Multiple ML algorithms are used to improve decision-making at different aspects after forecasting. This study focuses on the future prediction of the effectiveness of the COVID-19 vaccine effectiveness which has been presented as a light in the dark. People bear several reservations, including concerns about the efficacy of the COVID-19 vaccine. Under these presumptions, the COVID-19 vaccine would either lower the risk of developing the malady after injection, or the vaccine would impose side effects, affecting their existing health condition. In this regard, people have publicly expressed their concerns regarding the vaccine. This study intends to estimate what perception the masses will establish about the role of the COVID-19 vaccine in the future. Specifically, this study exhibits people’s predilection toward the COVID-19 vaccine and its results based on the reviews. Five models, e.g., random forest (RF), a support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), and an artificial neural network (ANN), were used for forecasting the overall predilection toward the COVID-19 vaccine. A voting classifier was used at the end of this study to determine the accuracy of all the classifiers. The results prove that the SVM produces the best forecasting results and that artificial neural networks (ANNs) produce the worst prediction toward the individual aptitude to be vaccinated by the COVID-19 vaccine. When using the voting classifier, the proposed system provided an overall accuracy of 89.9% for the random dataset and 45.7% for the date-wise dataset. Thus, the results show that the studied prediction technique is a promising and encouraging procedure for studying the future trends of the COVID-19 vaccine.

Suggested Citation

  • Syed Ali Jafar Zaidi & Saad Tariq & Samir Brahim Belhaouari, 2021. "Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier," Data, MDPI, vol. 6(11), pages 1-18, November.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:11:p:112-:d:670342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/11/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/11/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013. "Machine learning strategies for time series forecasting," ULB Institutional Repository 2013/167761, ULB -- Universite Libre de Bruxelles.
    2. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    3. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    4. Twumasi, Clement & Twumasi, Juliet, 2022. "Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1258-1277.
    5. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    6. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    7. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    8. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    9. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    10. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    11. Anastasios Petropoulos & Vassilis Siakoulis & Konstantinos P. Panousis & Loukas Papadoulas & Sotirios Chatzis, 2023. "Macroeconomic forecasting and sovereign risk assessment using deep learning techniques," Papers 2301.09856, arXiv.org.
    12. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    13. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    14. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    15. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    16. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    17. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    18. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    19. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    20. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:11:p:112-:d:670342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.