IDEAS home Printed from https://ideas.repec.org/e/c/pbu74.html
   My authors  Follow this author

Thomas Busch

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Thomas Busch & Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets," CREATES Research Papers 2007-09, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
    2. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    3. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
    4. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    5. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    6. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2024. "Extrapolation and option-implied kurtosis in volatility forecasting," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    7. Lai T. Hoang & Dirk G. Baur, 2020. "Forecasting bitcoin volatility: Evidence from the options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1584-1602, October.
    8. Duan, Yinying & Chen, Wang & Zeng, Qing & Liu, Zhicao, 2018. "Leverage effect, economic policy uncertainty and realized volatility with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 148-154.
    9. Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
    10. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    11. Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
    12. Peter Christoffersen & Xuhui (Nick) Pan, 2014. "Equity Portfolio Management Using Option Price Information," CREATES Research Papers 2015-05, Department of Economics and Business Economics, Aarhus University.
    13. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Eleftheria Kafousaki & Stavros Degiannakis, 2023. "Forecasting VIX: the illusion of forecast evaluation criteria," Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
    15. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    16. Luo, Xingguo & Ye, Zinan, 2015. "Predicting volatility of the Shanghai silver futures market: What is the role of the U.S. options market?," Finance Research Letters, Elsevier, vol. 15(C), pages 68-77.
    17. Keith Pilbeam & Kjell Langeland, 2015. "Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts," International Economics and Economic Policy, Springer, vol. 12(1), pages 127-142, March.
    18. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
    19. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2020. "Volatility Forecasting in European Government Bond Markets," Essex Finance Centre Working Papers 27362, University of Essex, Essex Business School.
    20. Yang, Heejin & Kutan, Ali M. & Ryu, Doojin, 2019. "Volatility information trading in the index options market: An intraday analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 412-426.
    21. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2023. "Options-based systemic risk, financial distress, and macroeconomic downturns," LSE Research Online Documents on Economics 119289, London School of Economics and Political Science, LSE Library.
    22. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    23. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    24. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    25. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    26. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    27. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    28. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    29. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    30. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    31. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    32. Chen, Rongda & Zhou, Hanxian & Yu, Lean & Jin, Chenglu & Zhang, Shuonan, 2021. "An efficient method for pricing foreign currency options," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    33. Simard Clarence & Rémillard Bruno, 2015. "Forecasting time series with multivariate copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-24, May.
    34. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    35. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    36. Pham, Son Duy & Nguyen, Thao Thac Thanh & Li, Xiao-Ming, 2024. "Stabilizing global foreign exchange markets in the time of COVID-19: The role of vaccinations," Global Finance Journal, Elsevier, vol. 59(C).
    37. Yun, Jaeho, 2020. "Variance risk premium in a small open economy with volatile capital flows: The case of Korea," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 105-125.
    38. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    39. Kim, Alisa & Trimborn, Simon & Härdle, Wolfgang Karl, 2021. "VCRIX — A volatility index for crypto-currencies," International Review of Financial Analysis, Elsevier, vol. 78(C).
    40. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    41. Schlag, Christian & Thimme, Julian & Weber, Rüdiger, 2020. "Implied Volatility Duration: A measure for the timing of uncertainty resolution," SAFE Working Paper Series 265, Leibniz Institute for Financial Research SAFE.
    42. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2011. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10, University of Cologne, Centre for Financial Research (CFR).
    43. Thobekile Qabhobho, 2023. "Assessing the Asymmetric Effect of Local Realized Exchange Rate Volatility and Implied Volatilities in Energy Market on Exchange Rate Returns in BRICS," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 231-239, March.
    44. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    45. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    46. S. Muzzioli, 2010. "Option-based forecasts of volatility: an empirical study in the DAX-index options market," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 561-586.
    47. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    48. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2022. "Can risk-neutral skewness and kurtosis subsume the information content of historical jumps?," Journal of Financial Markets, Elsevier, vol. 57(C).
    49. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2014. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10 [rev.], University of Cologne, Centre for Financial Research (CFR).
    50. Peters, R. & van der Weide, R., 2012. "Volatility: Expectations and Realizations," CeNDEF Working Papers 12-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    51. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    52. Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
    53. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    54. Seul-Ki Park & Ji-Eun Choi & Dong Wan Shin, 2017. "Value at risk forecasting for volatility index," Applied Economics Letters, Taylor & Francis Journals, vol. 24(21), pages 1613-1620, December.
    55. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    56. Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
    57. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    58. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    59. Frantiv{s}ek v{C}ech & Jozef Barun'ik, 2018. "Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities," Papers 1807.11823, arXiv.org.
    60. Yaw‐Huei Wang & Kuang‐Chieh Yen, 2018. "The information content of option‐implied tail risk on the future returns of the underlying asset," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(4), pages 493-510, April.
    61. Giampiero M. Gallo & Demetrio Lacava & Edoardo Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Papers 2305.12192, arXiv.org.
    62. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    63. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    64. Ricardo Crisostomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk-neutral and historical schemes," Papers 1801.08007, arXiv.org, revised May 2018.
    65. Christoffersen, Peter & Pan, Xuhui (Nick), 2018. "Oil volatility risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 5-26.
    66. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    67. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading at stock exchanges in global capital markets," MPRA Paper 49921, University Library of Munich, Germany.
    68. Anupam Dutta & Kakali Kanjilal & Sajal Ghosh & Donghyun Park & Gazi Salah Uddin, 2023. "Impact of crude oil volatility jumps on sustainable investments: Evidence from India," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1450-1468, October.
    69. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    70. Philippe Mueller & Andrea Vedolin & Yu-min Yen, 2012. "Bond Variance Risk Premia," FMG Discussion Papers dp699, Financial Markets Group.
    71. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Volatility jumps and their economic determinants," CREATES Research Papers 2014-27, Department of Economics and Business Economics, Aarhus University.
    72. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2021. "Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1618-1639, October.
    73. Lupu, Dan & Asandului, Mircea, 2014. "Considerations on the relantionship between exchange rates and stock markets in Eastern Europe in time of crisis," MPRA Paper 95507, University Library of Munich, Germany.
    74. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    75. Souček, Michael & Todorova, Neda, 2014. "Realized volatility transmission: The role of jumps and leverage effects," Economics Letters, Elsevier, vol. 122(2), pages 111-115.
    76. Gkillas Konstantinos & Gupta Rangan & Vortelinos Dimitrios I., 2023. "Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(1), pages 25-47, February.
    77. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    78. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    79. Hwang, Eunju & Shin, Dong Wan, 2015. "A CUSUMSQ test for structural breaks in error variance for a long memory heterogeneous autoregressive model," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 167-176.
    80. Brigida, Matt & Pratt, William R., 2017. "Fake news," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 564-573.
    81. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    82. Parhizgari, A.M. & Padungsaksawasdi, Chaiyuth, 2021. "Global equity market leadership positions through implied volatility measures," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 180-205.
    83. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    84. Zura Kakushadze & Juan Andrés Serur, 2018. "151 Trading Strategies," Springer Books, Springer, number 978-3-030-02792-6, January.
    85. Haugom, Erik & Ullrich, Carl J., 2012. "Forecasting spot price volatility using the short-term forward curve," Energy Economics, Elsevier, vol. 34(6), pages 1826-1833.
    86. Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
    87. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    88. Baule, Rainer & Korn, Olaf & Saßning, Sven, 2013. "Which beta is best? On the information content of option-implied betas," CFR Working Papers 13-11, University of Cologne, Centre for Financial Research (CFR).
    89. Delis, Panagiotis & Degiannakis, Stavros & Giannopoulos, Kostantinos, 2021. "What should be taken into consideration when forecasting oil implied volatility index?," MPRA Paper 110831, University Library of Munich, Germany.
    90. Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
    91. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    92. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
    93. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    94. Luo, Xingguo & Qin, Shihua & Ye, Zinan, 2016. "The information content of implied volatility and jumps in forecasting volatility: Evidence from the Shanghai gold futures market," Finance Research Letters, Elsevier, vol. 19(C), pages 105-111.
    95. Apostolos Kourtis & Raphael N. Markellos & Lazaros Symeonidis, 2016. "An International Comparison of Implied, Realized, and GARCH Volatility Forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1164-1193, December.
    96. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    97. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2014. "Multi-jumps," MPRA Paper 58175, University Library of Munich, Germany.
    98. Ji, Qiang & Zhang, Dayong, 2019. "China’s crude oil futures: Introduction and some stylized facts," Finance Research Letters, Elsevier, vol. 28(C), pages 376-380.
    99. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    100. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2023. "Options-based systemic risk, financial distress, and macroeconomic downturns," Journal of Financial Markets, Elsevier, vol. 65(C).
    101. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    102. Bo Young Chang & Bruno Feunou, 2013. "Measuring Uncertainty in Monetary Policy Using Implied Volatility and Realized Volatility," Staff Working Papers 13-37, Bank of Canada.
    103. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
    104. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
    105. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    106. Caporin, Massimiliano & Kolokolov, Alexey & Renò, Roberto, 2016. "Systemic co-jumps," SAFE Working Paper Series 149, Leibniz Institute for Financial Research SAFE.
    107. Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
    108. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    109. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    110. Michael Funke & Julius Loermann & Richhild Moessner, 2017. "The discontinuation of the EUR/CHF minimum exchange rate in January 2015: was it expected?," BIS Working Papers 652, Bank for International Settlements.
    111. Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
    112. Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
    113. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    114. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2009. "Option-Implied Measures of Equity Risk," CIRANO Working Papers 2009s-33, CIRANO.
    115. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    116. Eric Jacquier & Cedric Okou, 2013. "Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships," CIRANO Working Papers 2013s-14, CIRANO.
    117. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    118. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    119. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    120. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    121. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    122. Petar Sabtchevsky & Paul Whelan & Andrea Vedolin & Philippe Mueller, 2017. "Variance Risk Premia on Stocks and Bonds," 2017 Meeting Papers 1161, Society for Economic Dynamics.
    123. Neda Todorova & Michael Soucek & Eduardo Roca, 2015. "Volatility spillovers from international commodity markets to the Australian equity market," Discussion Papers in Finance finance:201505, Griffith University, Department of Accounting, Finance and Economics.
    124. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    125. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.
    126. Jungmu Kim & Yuen Jung Park, 2020. "Predictability of OTC Option Volatility for Future Stock Volatility," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    127. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
    128. Zhiyuan Pan & Jun Zhang & Yudong Wang & Juan Huang, 2024. "Modeling and forecasting stock return volatility using the HARGARCH model with VIX information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1383-1403, August.
    129. Omura, Akihiro & Li, Bin & Chung, Richard & Todorova, Neda, 2018. "Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals," Economic Modelling, Elsevier, vol. 70(C), pages 496-510.
    130. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    131. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    132. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    133. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
    134. Baruník Jozef & Fišer Pavel, 2024. "Co-Jumping of Treasury Yield Curve Rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 481-506.
    135. Kuo-Hao Lee & Ahmed Elkassabgi & Wei-Jen Hsieh, 2014. "Volatility of the Utilities Industry: Its Causal Relationship to Other Nine Industries," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 15-22, May.
    136. Ji‐Eun Choi & Dong Wan Shin, 2018. "Forecasts for leverage heterogeneous autoregressive models with jumps and other covariates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 691-704, September.
    137. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    138. Rainer Baule & Olaf Korn & Sven Saßning, 2016. "Which Beta Is Best? On the Information Content of Option†implied Betas," European Financial Management, European Financial Management Association, vol. 22(3), pages 450-483, June.
    139. Qi Xu & Ying Wang, 2021. "Managing volatility in commodity momentum," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 758-782, May.
    140. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    141. Alexander Kempf & Olaf Korn & Sven Saßning, 2015. "Portfolio Optimization Using Forward-Looking Information," Review of Finance, European Finance Association, vol. 19(1), pages 467-490.
    142. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    143. Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
    144. Maciej Augustyniak & Mathieu Boudreault, 2017. "Mitigating Interest Rate Risk in Variable Annuities: An Analysis of Hedging Effectiveness under Model Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 502-525, October.
    145. Kraft, Holger & Schmidt, Alexander, 2013. "Systemic risk in the financial sector: What can se learn from option markets?," SAFE Working Paper Series 25, Leibniz Institute for Financial Research SAFE.
    146. Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
    147. Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
    148. Schlag, Christian & Thimme, Julian & Weber, Rüdiger, 2021. "Implied volatility duration: A measure for the timing of uncertainty resolution," Journal of Financial Economics, Elsevier, vol. 140(1), pages 127-144.
    149. Hwang, Eunju & Shin, Dong Wan, 2013. "A CUSUM test for a long memory heterogeneous autoregressive model," Economics Letters, Elsevier, vol. 121(3), pages 379-383.
    150. Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
    151. Ho, Hwai-Chung & Tsai, Wei-Che, 2020. "Price delay and post-earnings announcement drift anomalies: The role of option-implied betas," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    152. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    153. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    154. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    155. Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
    156. Shin, Dong Wan & Hwang, Eunju, 2015. "A Lagrangian multiplier test for market microstructure noise with applications to sampling interval determination for realized volatilities," Economics Letters, Elsevier, vol. 129(C), pages 95-99.
    157. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    158. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    159. Shen, Lihua & Lu, Xinjie & Luu Duc Huynh, Toan & Liang, Chao, 2023. "Air quality index and the Chinese stock market volatility: Evidence from both market and sector indices," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 224-239.
    160. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    161. Liu, Ya & Qiu, Buhui & Wang, Teng, 2021. "Debt rollover risk, credit default swap spread and stock returns: Evidence from the COVID-19 crisis," Journal of Financial Stability, Elsevier, vol. 53(C).

  2. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.

    Cited by:

    1. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    2. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.

  3. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.

    Cited by:

    1. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    2. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    3. Tomáš Bunčák, 2016. "Exchange Rates Forecasting: Can Jump Models Combined with Macroeconomic Fundamentals Help?," Prague Economic Papers, Prague University of Economics and Business, vol. 2016(5), pages 527-546.
    4. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.
    5. Bunčák, Tomáš, 2013. "Jump Processes in Exchange Rates Modeling," MPRA Paper 49882, University Library of Munich, Germany.

Articles

  1. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    See citations under working paper version above.
  2. Thomas Busch, 2008. "Testing the martingale restriction for option implied densities," Review of Derivatives Research, Springer, vol. 11(1), pages 61-81, March.

    Cited by:

    1. Ching-Ping Wang & Hung-Hsi Huang & Chien-Chia Hung, 2011. "Implied Index And Option Pricing Errors: Evidence From The Taiwan Option Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(2), pages 115-125.

  3. Busch, Thomas, 2005. "A robust LR test for the GARCH model," Economics Letters, Elsevier, vol. 88(3), pages 358-364, September.

    Cited by:

    1. Choudhry, Taufiq, 2016. "Time-varying risk premium yield spread effect in term structure and global financial crisis: Evidence from Europe," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 303-311.
    2. Strohsal, Till & Weber, Enzo, 2011. "Mean-variance cointegration and the expectations hypothesis," SFB 649 Discussion Papers 2011-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
    4. Hu Liang & Shin Yongcheol, 2008. "Optimal Test for Markov Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-27, September.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.