IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i7p1190-1213.html
   My bibliography  Save this article

Forecasting value at risk and conditional value at risk using option market data

Author

Listed:
  • Annalisa Molino
  • Carlo Sala

Abstract

We forecast monthly value at risk (VaR) and conditional value at risk (CVaR) using option market data and four different econometric techniques. Independent from the econometric approach used, all models produce quick to estimate forward‐looking risk measures that do not depend from the amount of historical data used and that, through the implied moments of options, better reflect the ever‐changing market scenario. All proposed option‐based approaches outperform or are equally good to different “traditional” forecasts that use historical returns as input. The extensive robustness of our results shows that the real driver of the better forecasts is the use of option market data as inputs for the analysis, more than the type of econometric approach implemented.

Suggested Citation

  • Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1190-1213
    DOI: 10.1002/for.2756
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2756
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Giovanni Barone Adesi, 2016. "VaR and CVaR Implied in Option Prices," JRFM, MDPI, vol. 9(1), pages 1-6, February.
    5. Turan G. Bali & Nusret Cakici & Fousseni Chabi-Yo, 2011. "A Generalized Measure of Riskiness," Management Science, INFORMS, vol. 57(8), pages 1406-1423, August.
    6. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    7. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    8. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    11. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    12. Giovanni Barone‐Adesi & Marinela Adriana Finta & Chiara Legnazzi & Carlo Sala, 2019. "WTI crude oil option implied VaR and CVaR: An empirical application," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 552-563, September.
    13. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    16. Sovan Mitra, 2015. "The relationship between conditional value at risk and option prices with a closed-form solution," The European Journal of Finance, Taylor & Francis Journals, vol. 21(5), pages 400-425, March.
    17. Allan M. Malz, 1997. "Option-implied probability distributions and currency excess returns," Staff Reports 32, Federal Reserve Bank of New York.
    18. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    19. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    20. Jose M. Campa & P.H. Kevin Chang & Robert L. Reider, 1997. "Implied Exchange Rate Distributions: Evidence from OTC Option Markets," NBER Working Papers 6179, National Bureau of Economic Research, Inc.
    21. Giovanni Barone‐Adesi & Chiara Legnazzi & Carlo Sala, 2019. "Option‐implied risk measures: An empirical examination on the S&P 500 index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1409-1428, October.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    24. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    25. Bali, Turan G. & Murray, Scott, 2013. "Does Risk-Neutral Skewness Predict the Cross-Section of Equity Option Portfolio Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1145-1171, August.
    26. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2023. "Options-based systemic risk, financial distress, and macroeconomic downturns," LSE Research Online Documents on Economics 119289, London School of Economics and Political Science, LSE Library.
    2. Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
    3. Bevilacqua, Mattia & Tunaru, Radu & Vioto, Davide, 2023. "Options-based systemic risk, financial distress, and macroeconomic downturns," Journal of Financial Markets, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Barone‐Adesi & Chiara Legnazzi & Carlo Sala, 2019. "Option‐implied risk measures: An empirical examination on the S&P 500 index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1409-1428, October.
    2. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    3. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    6. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    7. Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
    8. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    9. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    10. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    11. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    12. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    13. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    14. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    15. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    16. Marie Briere, 2006. "Market Reactions to Central Bank Communication Policies :Reading Interest Rate Options Smiles," Working Papers CEB 38, ULB -- Universite Libre de Bruxelles.
    17. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    18. Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
    19. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    20. Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1190-1213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.