IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v137y2024ics0140988324005164.html
   My bibliography  Save this article

Return and volatility spillovers between the raw material and electric vehicles markets

Author

Listed:
  • Alekseev, Oleg
  • Janda, Karel
  • Petit, Mathieu
  • Zilberman, David

Abstract

This paper investigates the return and volatility spillovers between the upstream electric vehicles (EV) battery raw materials market and the individual downstream EV producers. The study uses the daily stock returns of two lithium producers and a new model in the GARCH family to capture the jump component of volatility in the EV battery raw materials market. Return and volatility spillovers are studied using an EGARCH(1,1) model including the excess stock returns of lithium producers in the mean equation and their jump component intensity in the variance equation. The results indicate that jumps exist in the EV battery raw materials market and that there exist significant return spillovers between lithium and EV producers. However, this paper did not find any strong evidence of the existence of volatility spillovers between these two markets through lithium unexpected news.

Suggested Citation

  • Alekseev, Oleg & Janda, Karel & Petit, Mathieu & Zilberman, David, 2024. "Return and volatility spillovers between the raw material and electric vehicles markets," Energy Economics, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:eneeco:v:137:y:2024:i:c:s0140988324005164
    DOI: 10.1016/j.eneco.2024.107808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324005164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chan, Louis K C & Hamao, Yasushi & Lakonishok, Josef, 1991. "Fundamentals and Stock Returns in Japan," Journal of Finance, American Finance Association, vol. 46(5), pages 1739-1764, December.
    2. David S. Rapson & Erich Muehlegger, 2023. "The Economics of Electric Vehicles," Review of Environmental Economics and Policy, University of Chicago Press, vol. 17(2), pages 274-294.
    3. Baur, Dirk G. & Todorova, Neda, 2018. "Automobile manufacturers, electric vehicles and the price of oil," Energy Economics, Elsevier, vol. 74(C), pages 252-262.
    4. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    5. Hu, Genhua & Jiang, Haifeng, 2023. "Time-varying jumps in China crude oil futures market impacted by COVID-19 pandemic," Resources Policy, Elsevier, vol. 82(C).
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Dutta, Anupam & Nikkinen, Jussi & Rothovius, Timo, 2017. "Impact of oil price uncertainty on Middle East and African stock markets," Energy, Elsevier, vol. 123(C), pages 189-197.
    8. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    9. Janda, Karel & Kourilek, Jakub, 2020. "Residual shape risk on natural gas market with mixed jump diffusion price dynamics," Energy Economics, Elsevier, vol. 85(C).
    10. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    11. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    12. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    13. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    14. Xiao, Yuewen & Zhao, Jing, 2021. "Price dynamics of individual stocks: Jumps and information," Finance Research Letters, Elsevier, vol. 38(C).
    15. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    16. Shi, Yangyan & Feng, Yu & Zhang, Qi & Shuai, Jing & Niu, Jiangxin, 2023. "Does China's new energy vehicles supply chain stock market have risk spillovers? Evidence from raw material price effect on lithium batteries," Energy, Elsevier, vol. 262(PA).
    17. Anupam Dutta & Elie Bouri & David Roubaud, 2021. "Modelling the volatility of crude oil returns: Jumps and volatility forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 889-897, January.
    18. Jung Youn Mo & Wooyoung Jeon, 2018. "The Impact of Electric Vehicle Demand and Battery Recycling on Price Dynamics of Lithium-Ion Battery Cathode Materials: A Vector Error Correction Model (VECM) Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    19. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    20. Dinh, Theu & Goutte, Stéphane & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Economic drivers of volatility and correlation in precious metal markets," Journal of Commodity Markets, Elsevier, vol. 28(C).
    21. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    22. Shahzad, Syed Jawad Hussain & Naeem, Muhammad Abubakr & Peng, Zhe & Bouri, Elie, 2021. "Asymmetric volatility spillover among Chinese sectors during COVID-19," International Review of Financial Analysis, Elsevier, vol. 75(C).
    23. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    24. Kang, Sang Hoon & Arreola Hernandez, Jose & Rehman, Mobeen Ur & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2023. "Spillovers and hedging between US equity sectors and gold, oil, islamic stocks and implied volatilities," Resources Policy, Elsevier, vol. 81(C).
    25. John, Kose & Li, Jingrui, 2021. "COVID-19, volatility dynamics, and sentiment trading," Journal of Banking & Finance, Elsevier, vol. 133(C).
    26. Balli, Faruk & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain & de Bruin, Anne, 2019. "Spillover network of commodity uncertainties," Energy Economics, Elsevier, vol. 81(C), pages 914-927.
    27. Zhang, Chuanguo & Shang, Hongli, 2023. "Asymmetry effect of oil price shocks and the lagging effect of oil price jumps: Evidence from China's automobile markets," Energy Policy, Elsevier, vol. 172(C).
    28. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    29. Farid, Saqib & Kayani, Ghulam Mujtaba & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain, 2021. "Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 72(C).
    30. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    31. Dutta, Anupam & Soytas, Ugur & Das, Debojyoti & Bhattacharyya, Asit, 2022. "In search of time-varying jumps during the turmoil periods: Evidence from crude oil futures markets," Energy Economics, Elsevier, vol. 114(C).
    32. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    33. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    34. Zhang, Chuanguo & Liu, Feng & Yu, Danlin, 2018. "Dynamic jumps in global oil price and its impacts on China's bulk commodities," Energy Economics, Elsevier, vol. 70(C), pages 297-306.
    35. Janette Rutterford, 2004. "From dividend yield to discounted cash flow: a history of UK and US equity valuation techniques," Accounting History Review, Taylor & Francis Journals, vol. 14(2), pages 115-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    2. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    3. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Tong, Yuan & Wan, Ning & Dai, Xingyu & Bi, Xiaoyi & Wang, Qunwei, 2022. "China's energy stock market jumps: To what extent does the COVID-19 pandemic play a part?," Energy Economics, Elsevier, vol. 109(C).
    5. Zargar, Faisal Nazir & Mohnot, Rajesh & Hamouda, Foued & Arfaoui, Nadia, 2024. "Risk dynamics in energy transition: Evaluating downside risks and interconnectedness in fossil fuel and renewable energy markets," Resources Policy, Elsevier, vol. 92(C).
    6. Zhang, Lei & Chen, Yan & Bouri, Elie, 2024. "Time-varying jump intensity and volatility forecasting of crude oil returns," Energy Economics, Elsevier, vol. 129(C).
    7. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 29-80.
    8. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    9. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
    10. Anupam Dutta & Kakali Kanjilal & Sajal Ghosh & Donghyun Park & Gazi Salah Uddin, 2023. "Impact of crude oil volatility jumps on sustainable investments: Evidence from India," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1450-1468, October.
    11. Liu, Feng & Shao, Shuai & Li, Xin & Pan, Na & Qi, Yu, 2023. "Economic policy uncertainty, jump dynamics, and oil price volatility," Energy Economics, Elsevier, vol. 120(C).
    12. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Azoury, Nehme & Uddin, Gazi Salah, 2024. "Does oil price volatility matter for the US transportation industry?," Energy, Elsevier, vol. 290(C).
    13. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    14. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    15. Boubaker, Sabri & Karim, Sitara & Naeem, Muhammad Abubakr & Sharma, Gagan Deep, 2023. "Financial markets, energy shocks, and extreme volatility spillovers," Energy Economics, Elsevier, vol. 126(C).
    16. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    17. Su, Xianfang & Zhao, Yachao, 2023. "What has the strongest connectedness with clean energy? Technology, substitutes, or raw materials," Energy Economics, Elsevier, vol. 128(C).
    18. Gkillas Konstantinos & Gupta Rangan & Vortelinos Dimitrios I., 2023. "Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(1), pages 25-47, February.
    19. Liu, Feng & Xu, Jie & Ai, Chunrong, 2023. "Heterogeneous impacts of oil prices on China's stock market: Based on a new decomposition method," Energy, Elsevier, vol. 268(C).
    20. Baruník Jozef & Fišer Pavel, 2024. "Co-Jumping of Treasury Yield Curve Rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 481-506.

    More about this item

    Keywords

    EVs; Return spillovers; Volatility spillovers; Jump component; Jump intensity; EGARCH-EARJI;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:137:y:2024:i:c:s0140988324005164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.