IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/265.html
   My bibliography  Save this paper

Implied Volatility Duration: A measure for the timing of uncertainty resolution

Author

Listed:
  • Schlag, Christian
  • Thimme, Julian
  • Weber, Rüdiger

Abstract

We introduce Implied Volatility Duration (IVD) as a new measure for the timing of uncertainty resolution, with a high IVD corresponding to late resolution. Portfolio sorts on a large cross-section of stocks indicate that investors demand on average more than five percent return per year as a compensation for a late resolution of uncertainty. In a general equilibrium model, we show that 'late' stocks can only have higher expected returns than 'early' stocks, if the investor exhibits a preference for early resolution of uncertainty. Our empirical analysis thus provides a purely market-based assessment of the timing preferences of the marginal investor.

Suggested Citation

  • Schlag, Christian & Thimme, Julian & Weber, Rüdiger, 2020. "Implied Volatility Duration: A measure for the timing of uncertainty resolution," SAFE Working Paper Series 265, Leibniz Institute for Financial Research SAFE.
  • Handle: RePEc:zbw:safewp:265
    DOI: 10.2139/ssrn.2881993
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/213567/1/1689537477.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.2881993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. Michael Brennan & Sahn-Wook Huh & Avanidhar Subrahmanyam, 2013. "An Analysis of the Amihud Illiquidity Premium," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 3(1), pages 133-176.
    3. Leonid Kogan & Dimitris Papanikolaou, 2014. "Growth Opportunities, Technology Shocks, and Asset Prices," Journal of Finance, American Finance Association, vol. 69(2), pages 675-718, April.
    4. Hengjie Ai & Ravi Bansal, 2018. "Risk Preferences and the Macroeconomic Announcement Premium," Econometrica, Econometric Society, vol. 86(4), pages 1383-1430, July.
    5. Adrian Buss & Grigory Vilkov, 2012. "Measuring Equity Risk with Option-implied Correlations," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3113-3140.
    6. Larry G. Epstein & Emmanuel Farhi & Tomasz Strzalecki, 2014. "How Much Would You Pay to Resolve Long-Run Risk?," American Economic Review, American Economic Association, vol. 104(9), pages 2680-2697, September.
    7. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    8. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    9. Tomasz Strzalecki, 2013. "Temporal Resolution of Uncertainty and Recursive Models of Ambiguity Aversion," Econometrica, Econometric Society, vol. 81(3), pages 1039-1074, May.
    10. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    11. Meissner, Thomas & Pfeiffer, Philipp, 2022. "Measuring preferences over the temporal resolution of consumption uncertainty," Journal of Economic Theory, Elsevier, vol. 200(C).
    12. Byeong-Je An & Andrew Ang & Turan G. Bali & Nusret Cakici, 2014. "The Joint Cross Section of Stocks and Options," Journal of Finance, American Finance Association, vol. 69(5), pages 2279-2337, October.
    13. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    14. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    15. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    16. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    17. Alexander L. Brown & Hwagyun Kim, 2014. "Do Individuals Have Preferences Used in Macro-Finance Models? An Experimental Investigation," Management Science, INFORMS, vol. 60(4), pages 939-958, April.
    18. Robert F. Stambaugh & Jianfeng Yu & Yu Yuan, 2015. "Arbitrage Asymmetry and the Idiosyncratic Volatility Puzzle," Journal of Finance, American Finance Association, vol. 70(5), pages 1903-1948, October.
    19. Tomáš Havránek, 2015. "Measuring Intertemporal Substitution: The Importance Of Method Choices And Selective Reporting," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1180-1204, December.
    20. Francesco D’Acunto & Daniel Hoang & Michael Weber, 2017. "The Effect of Unconventional Fiscal Policy on Consumption Expenditure," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 15(01), pages 09-11, April.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. Ravi Jagannathan & Binying Liu & Jiaqi Zhang, 2019. "Corrigendum for Dividend Dynamics, Learning, and Expected Stock Index Returns," Journal of Finance, American Finance Association, vol. 74(4), pages 2107-2116, August.
    23. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    24. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    25. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    26. Annette Vissing-Jørgensen & Orazio P. Attanasio, 2003. "Stock-Market Participation, Intertemporal Substitution, and Risk-Aversion," American Economic Review, American Economic Association, vol. 93(2), pages 383-391, May.
    27. Johnson, Travis L., 2017. "Risk Premia and the VIX Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2461-2490, December.
    28. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    29. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2012. "An Empirical Evaluation of the Long-Run Risks Model for Asset Prices," Critical Finance Review, now publishers, vol. 1(1), pages 183-221, January.
    30. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    31. Weber, Michael, 2018. "Cash flow duration and the term structure of equity returns," Journal of Financial Economics, Elsevier, vol. 128(3), pages 486-503.
    32. Itamar Drechsler & Amir Yaron, 2011. "What's Vol Got to Do with It," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 1-45.
    33. Ravi Jagannathan & Binying Liu, 2019. "Dividend Dynamics, Learning, and Expected Stock Index Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 401-448, February.
    34. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    35. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    36. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    37. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    38. Attanasio, Orazio P & Weber, Guglielmo, 1989. "Intertemporal Substitution, Risk Aversion and the Euler Equation for Consumption," Economic Journal, Royal Economic Society, vol. 99(395), pages 59-73, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sönksen, Jantje & Grammig, Joachim, 2021. "Empirical asset pricing with multi-period disaster risk: A simulation-based approach," Journal of Econometrics, Elsevier, vol. 222(1), pages 805-832.
    2. Stephen Penman, 2021. "Accounting for Risk," Foundations and Trends(R) in Accounting, now publishers, vol. 15(4), pages 373-507, November.
    3. Bali, Turan G. & Beckmeyer, Heiner & Moerke, Mathis & Weigert, Florian, 2021. "Option return predictability with machine learning and big data," CFR Working Papers 21-08, University of Cologne, Centre for Financial Research (CFR).
    4. Penman, Stephen & Zhu, Julie, 2022. "An accounting-based asset pricing model and a fundamental factor," Journal of Accounting and Economics, Elsevier, vol. 73(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlag, Christian & Thimme, Julian & Weber, Rüdiger, 2021. "Implied volatility duration: A measure for the timing of uncertainty resolution," Journal of Financial Economics, Elsevier, vol. 140(1), pages 127-144.
    2. Ho, Hwai-Chung & Tsai, Wei-Che, 2020. "Price delay and post-earnings announcement drift anomalies: The role of option-implied betas," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.
    4. Julian Thimme, 2017. "Intertemporal Substitution In Consumption: A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 226-257, February.
    5. Elminejad, Ali & Havranek, Tomas & Irsova, Zuzana, 2022. "Relative Risk Aversion: A Meta-Analysis," MetaArXiv b8uhe, Center for Open Science.
    6. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    7. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    8. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    9. Xin Chen & Wei He & Libin Tao & Jianfeng Yu, 2023. "Attention and Underreaction-Related Anomalies," Management Science, INFORMS, vol. 69(1), pages 636-659, January.
    10. Schlag, Christian & Semenischev, Michael & Thimme, Julian, 2020. "Predictability and the cross-section of expected returns: A challenge for asset pricing models," SAFE Working Paper Series 289, Leibniz Institute for Financial Research SAFE.
    11. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
    12. Ruan, Xinfeng & Zhang, Jin E., 2018. "Equilibrium variance risk premium in a cost-free production economy," Journal of Economic Dynamics and Control, Elsevier, vol. 96(C), pages 42-60.
    13. Wang, Zijun, 2021. "The high volume return premium and economic fundamentals," Journal of Financial Economics, Elsevier, vol. 140(1), pages 325-345.
    14. Kelley Bergsma & Jitendra Tayal, 2019. "Short Interest and Lottery Stocks," Financial Management, Financial Management Association International, vol. 48(1), pages 187-227, March.
    15. Jorida Papakroni, 2018. "The dispersion anomaly and analyst recommendations," Review of Quantitative Finance and Accounting, Springer, vol. 50(3), pages 861-896, April.
    16. Cakici, Nusret & Zaremba, Adam, 2023. "Recency bias and the cross-section of international stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    17. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    18. Maio, Paulo & Silva, André C., 2020. "Asset pricing implications of money: New evidence," Journal of Banking & Finance, Elsevier, vol. 120(C).
    19. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    20. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    preference for early resolution of uncertainty; implied volatility; cross-sectionof expected stock returns; asset pricing;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.